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Echelon:Peer-to-Peer Network Diagnosis
with Network Coding

Chuan Wu, Baochun Li

Abstract— It is critical to monitor the performance and
“health” of large-scale peer-to-peer applications. As an example,
operators of peer-to-peer live streaming applications may be
interested in observing performance bottlenecks, peer failures,
and network topologies. In most cases, such observations are
used to diagnose potential problems in the protocol design, to
troubleshoot network outage, or to improve the Quality of Service
of the peer-to-peer network in general. They arenot time sensitive
in nature, as delayed observations up to minutes or even hours
are still valuable. However, such historical and delay-tolerant
observations should include measurements of peers that have
already failed or departed, as peer dynamics significantly affect
the health of peer-to-peer applications. Such a delay-tolerant
observation of peer-to-peer applications over a historical period
of time is referred to as a diagnosis. In this paper, we present
Echelon, a time-insensitive way to construct thediagnosis of
a large-scale peer-to-peer application. Replacing the traditional
wisdom of logging servers, we leverage the power of network
coding to collect application-specific measurements on each peer,
and disseminate them to other peers in a coded form. Over time,
measurements of departed peers can still be recovered, simply by
probing a small subset of peers in the network. Simulation studies
have shown that Echelon is highly configurable, bandwidth
efficient, and extremely tolerant of peer dynamics, thanks to the
advantages of randomized network coding.

I. I NTRODUCTION

Peer-to-peer (P2P) architectures have been shown to offer
high performance, better scalability, as well as superb re-
silience to peer failures and departures. It has been increasingly
natural to design Internet applications using the peer-to-peer
architecture, including bulk content distribution (e.g.,BitTor-
rent) and live media streaming (e.g., IP Television). In such
peer-to-peer applications, it is critical for operators tomonitor
the performance and “health” of live peer-to-peer sessions.

Any such monitoring starts with measurements of Quality
of Service parameters at each peer. The set of parameters to
be measured is certainly application specific. For example,in
live media streaming applications, it is essential to monitor
the achieved streaming rate, the number of upstream and
downstream peers, the latency to neighbor peers, and resource
usage such as bandwidth and CPU load. If bandwidth limits
have been imposed by either Internet Service Providers or
application-layer traffic shapers, it is ideal to also monitor
residual bandwidth. In peer-to-peer online gaming applica-
tions, latency to a small set of gaming servers may be critical,
as they dramatically affect the gaming experience. As these
parameters are measured periodically (for example, every
minute), the set of measurements in one time interval is
hereafter referred to as asnapshotof the peer.
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Operators of live peer-to-peer sessions are interested in
system-wide characteristics of the entire peer-to-peer network,
by collecting and aggregating per-peer snapshots. Such charac-
teristics may include network topologies, regional performance
bottlenecks, and patterns of peer departures or failures. In
most cases, such observations are used to diagnose potential
problems in algorithm design (such as convergence of op-
timization strategies), to troubleshoot network outage, or to
improve the Quality of Service of the peer-to-peer session in
general. For long-running peer-to-peer applications, most of
such observations arenot time sensitive in nature, as delayed
collections of snapshots — up to minutes or even hours —
are still valuable.

One specific requirement, however, is the ability to collect
snapshots from peers that no longer exist at the time of
collection, including those who have left the session or failed.
Historical snapshots on these peers are particularly valuable,
as peer dynamics is one of the most important characteristics
that significantly affect the health of peer-to-peer sessions.
Simply put, the operators may be interested in reconstructing a
“postmortem report” of the peer-to-peer session, by collecting
peer snapshots over a historical period of time, including all
the peers that have already departed. For lack of a better word,
in this paper, such a “postmortem report” is referred to as a
diagnosisof the peer-to-peer session in question.

The traditional wisdom to collect peer snapshots is to rely
on peers sending periodic reports to alogging server. While
dedicated servers in peer-to-peer sessions are commonplace
in real-world peer-to-peer applications, most are used for
low-bandwidth one-time communication with participating
peers, such as an authentication server to bootstrap a new
peer. Periodic snapshots represent much higher traffic vol-
ume, especially when the number of peers in the session
increases dramatically. In large-scale peer-to-peer applications,
such periodic reporting essentially morphs into ade facto
Distributed Denial of Service attack to the logging server.It is,
without a doubt, not a scalable design. Due to such challenges
of deploying centralized logging servers, operators resort to
traditional remedies of either decreasing the frequency of
obtaining snapshots, or reducing the amount of data to be
reported in each snapshot.

In this paper, we presentEchelon, our answer to the
aforementioned challenges. The primary design objectivesof
Echelon are to be able to scale to large-scale peer-to-peer
sessions, and to tolerate extreme levels of peer dynamics.
In other words, peers may come and go, but thediagnosis
of the network persists, regardless of the scale of the peer-
to-peer session. InEchelon, we use a peer-to-peer overlay
to disseminate snapshots produced at each peer, and cache
them in a completely decentralized fashion in the peer-to-
peer session. Due to the delay-tolerant nature of constructing
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the diagnosis, such a peer-to-peer overlay is lightweight,and
carries traffic at low bit rates using residual peer bandwidth. In
order to be resilient to extreme peer dynamics and to include
snapshots of peers that have already departed, we leverage the
power of randomized network coding, such that only coded
snapshots are exchanged among peers and cached. At the time
of constructing a diagnosis, the operator only needs to probe
an arbitrary and small subset of live peers in the session. The
power of network coding effectively guarantees thatEchelonis
highly resilient to peer departures and failures, and is flexible,
configurable, and simple to implement.

The remainder of this paper is organized as follows. In
Sec. II, we motivate our design ofEchelonand the use of
network coding. In Sec. III, the complete spectrum ofEchelon
is formally presented. In Sec. IV, we show howEchelon
may be refined and configured, with respect to its bandwidth
usage and resilience to peer departures. An empirical study
of Echelonbased on simulations is presented in Sec. V. We
discuss related work and conclude the paper with a future
outlook in Sec. VI and Sec. VII, respectively.

II. ECHELON: A D IFFERENTWAY TO USE

NETWORK CODING

In this paper, we consider a large-scale peer-to-peer network
with n peers. Each peer may participate in one or more peer-
to-peer communication sessions. Peers may participate and
leave the sessions at any time. In each session, a mesh overlay
topology exists at any given time, defined by the selection of
neighbor peers. Without loss of generality, we assumek out
of a set (N ) of n peers periodically collect local application-
specific measurements, calledsnapshots. As snapshots are
captured periodically, the time interval between two successive
snapshots is referred to as anepoch, with a lengthT . The peers
that produce periodic snapshots are calledsnapshot peers, and
form a setS. We assume that all original snapshots captured at
peers are of the same byte lengthL, sometimes also referred to
as original data blocks. There exists asnapshot collector, C,
who is responsible for collecting snapshots from peers, andfor
performing postmortem analysis and reaching the diagnosison
the “health” of the peer-to-peer sessions. An example for such
a peer-to-peer network is illustrated in Fig. 1.
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Fig. 1. Collecting snapshots: an example in a6-peer network with4 snapshot
peersS1, S2, S3 andS4.

Our design objective inEchelon is to efficiently collectk
original snapshots in each epoch, by probing just an arbitrary
and small subset of the peers in the network. Such aggregation
should always be successful, even when some of the snapshot
peers are no longer in the network at the time of collection.

In order to aggregate all snapshots from only a small number
of peers, we leverage the storage capacities on each peer, and
ask each peer to cache a number of data blocks generated
by other peers. In order to be resilient to peer dynamics, we
utilize the residual bandwidth of the peers to disseminatek
data blocks to alln peers in the network in a coded form.
To achieve bandwidth-efficient data dissemination and fully
decentralized caching of each data block, we leverage the
power of randomized network codingto exchange and store
coded snapshot data blocks in the peer-to-peer network.

Network coding allows the encoding of received data blocks
at intermediate nodes [1], [2], [3]. Withrandomizednetwork
coding [4], a node generates a new coded block by the linear
combination of its received blocks (and possibly its own
original blocks) over a Galois fieldGF (2q), with coefficients
randomly chosen. In this way, every coded block in the
network can be regarded as a linear combination ofk original
blocks. Decoding is performed by choosingk coded blocks
with linearly independent coefficient vectors and inverting the
combined coefficient matrix overGF (2q).

Network coding was first proposed to improve multicast
session throughput. We believe, however, that the most im-
portant advantage of randomized network coding is to increase
the diversityof data blocks, and to improve resilience against
failures. By choosing coding coefficients randomly from a
Galois field of a proper size, the coefficient vectors of any
k coded blocks are linearly independent with high probability,
and thus can be used to recover thek original blocks. Even
after original data sources have departed, there is still a good
chance for all the original blocks to be fully recoverable.

In Echelon, during each epoch, a snapshot peer sends out
its original snapshot as an original data block to its neighbor
peers. Its neighbors then code their received and original
blocks (if they are snapshot peers themselves) belonging tothe
same epoch with a random linear code, and further distribute
these new coded blocks. Fig. 2(A) illustrates a simple example
of such multi-sourcenetwork coding in a directed network,
based on the network example given in Fig. 1. Four original
data blocks,a, b, c, d, are generated at snapshot peersS1, S2,
S3, andS4, respectively.
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Fig. 2. Multi-source network coding: (A) an example in a direct network;
(B) an example in a cyclic network.

The way we use network coding inEchelonis substantially
different from most previous work. First of all, the dissem-
ination of original snapshots (original data blocks) is time
insensitive in nature, such that coded blocks may be sent using
residual peer bandwidth. Second, our goal is not to broadcast
all k original data blocks from their sources to alln peers
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in the network, but to disseminate every original block to all
n peers in itscoded form. Therefore, cached coded blocks at
each peer are linear combinations of all original blocks, but
the number of coded blocks cached at a peer is dependent on
its allocated cache capacity, usually much smaller thank. It is
the snapshot collector’s responsibility to collectk coded blocks
from a subset of peers and to recover all original snapshots in
an epoch.

We assume every peer caches coded blocks forE epochs,
as the snapshot collector may be interested in collecting
snapshots in a recent epoch. LetMi be the total cache capacity
allocated at peeri in terms of the number of coded blocks,
and mi be the number of blocks it caches for each epoch,
1 ≤ mi ≤ k. We haveMi = E · mi. Such a snapshot cache
is implemented as a circular buffer, where the blocks for the
oldest epoch are discarded when the buffer is full.

To implement randomized network coding in practical peer-
to-peer networks, we need to consider bi-directional overlay
links, and topologies with cycles. The convenience in the
case of acyclic network topologies may no longer hold. For
example, in Fig. 2(A), a peer codes and relays new coded
blocks to its downstream peers when all the blocks from its
incoming links have arrived. This is not possible in network
topologies with cycles,e.g., Fig. 2(B), since deadlocks occur
as soon as peers are waiting for all incoming blocks from each
other. We address this problem in subsequent sections in this
paper.

III. E CHELON: AN IN-DEPTH V IEW

In this section, we present theEchelon protocol, which
utilizes network coding in a novel and practical way. We limit
our discussion to the snapshot dissemination protocol executed
in one epoch, as it is trivial to extend it to more than one epoch.

Before going into the details ofEchelon, let us revisit the
practical network coding problem in Fig. 2(B). One possible
solution for network coding in such cyclic networks is to ask
each peer to encode currently available incoming blocks, after
waiting for a certain period of time. However, we argue that
even though this simple solution breaks deadlocks using a
timeout mechanism, it does not completely solve the problem
to our satisfaction. InEchelon, original data blocks are pro-
duced at different peers. If each peer only encodes incoming
blocks (and sends coded blocks to downstream peers)once,
cached blocks at a peer may only contain original blocks
produced at nearby snapshot peers. We have not achieved
the objective of disseminating the original snapshots overthe
entire network.

Echelonrepresents aniterativenetwork coding approach, in
that coded data dissemination in each epoch is implemented
in a fully distributed and iterative fashion. In Echelon, ran-
domized network coding at each peer is further divided into
multiple time slotsof length t, with t ≪ T , the length of
an epoch. In each time slot, a peer codes its cached blocks
received in the previous time slots, and sends generated blocks
to its neighbor peers. It then waits for timet before it codes and
distributes snapshots again. We refer to the protocol execution
in a time slot as around of execution. In what follows, we

ID1 C1 ID2 C2 ... IDk' Ck' Coded Data BlockEpoch #

Fig. 3. Data message format: ID - block identifier, C - coding coefficient

first present the format of coded data messages inEchelon, and
then discuss the detailed protocol for its coded dissemination.

A. Data message format

In traditional network coding implementation,k coding
coefficients are delivered together with each coded data block,
arranged in the order of their corresponding original blocks.
However, inEchelon, original data blocks are produced in a
completely distributed fashion, and thus represent no natural
ordering among themselves. In addition, the total number of
original blocks,k, is continuously changing with peer joins
and departures, and is unknown to the peers in the network.

In Echelon, we design a new data message format to address
the above problems. As each snapshot peer generates one
snapshot in each epoch, we associate an identifier (ID) with
each block, which is ar-bit integer (2r > k) obtained by
hashing its generator peer’s IP address with a base hash
function. We also generate ane-bit epoch number to represent
each epoch, by hashing the starting time of the epoch. The
block ID and the epoch number can be used to identify each
original data block. In a coded data message, we include the
epoch number and IDs of the original blocks from which the
coded block is generated, together with the coding coefficients.
An illustration of the message format is shown in Fig. 3. Note
that we only include coefficients and IDs of the original blocks
that are used to generate a coded block, and therefore, the
byte length of the coefficient part (i.e., coding coefficients and
corresponding block IDs) of different data messages varies.

B. Coded dissemination

At the beginning of an epoch, each snapshot peer collects
its local measurements and generates an original snapshot.For
example, in Fig. 4, at time0, snapshot peersS1, S2, S3 and
S4 produce and cache blocksa, b, c andd, respectively. Next,
each snapshot peer sends its original snapshot to its neighbors.
Therefore, in the first time slot̄t = 1, every peer receives the
original data blocks its snapshot neighbor peers produce. In
Fig. 4(B), for example,S3 obtains blocksa, b, d from its three
neighborsS1, S2 andS4, respectively.

In each of the following time slots̄t = 2, 3, . . ., a pull-based
coded dissemination mechanism is employed based on block
advertisement. Let̂Di(t̄) be the set of data blocks peeri is
caching at the beginning of time slott̄. When peeri receives
a coded data message, it retrieves the IDs of included original
blocks, and adds them into a setB̂i. Therefore,B̂i(t̄) includes
IDs of the original blocks that are contained in any of the
coded blocks inD̂i(t̄). If the ID of an original blockb is
included inB̂i(t̄), we say peeri knowsor hasblock b by the
t̄th time slot.

The protocol executed in time slot̄t follows the following
steps:

Step 1 – Advertise. Peeri sends an advertisement message
to each of its neighbor peers, containing IDs of the original
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Fig. 4. Coded dissemination protocol: an example.

data blocks that it has newly learned from the coded blocks
received in time slot̄t− 1, i.e., any IDs in the set of̂Bi(t̄)−
B̂i(t̄ − 1). If there is no such ID, peeri does not send any
advertisement messages.

Step 2 – Request. At a receiver peerj, after retrieving the
block IDs from a received advertisement message, it checks
whether its neighbori knows any original block that it has
never heard of,i.e., whose ID is not inB̂j(t̄). If there is such
a block, peerj requests a coded block from peeri.

Step3 – Code and Deliver. Upon the request from neighbor
peerj, peeri generates a coded block by the linear combina-
tion of all its currently cached coded blocks in̂Di(t̄). Together
with the epoch number, coding coefficients and corresponding
original block IDs, it delivers the message to peerj.

Step4 – Cache. After peerj receives a coded data message,
if its cache is not full yet, it places the coded block directly
into the cache; otherwise, it randomly selects one coded block
in its cache and codes the received block with it with a random
linear code.

The execution of the above iterative protocol at each peer
naturally terminates when it no longer receives advertisement
messages containing IDs of original data blocks that it does
not know, i.e., when each peer has virtually received all the
original blocks in the current network in coded form.

Continuing with the example in Fig. 4, we illustrate the
execution of the protocol. Each peer can cache up to4 coded
blocks per epoch. At the beginning of the second time slot
shown in Fig. 4(B), for the example of peerS1, its setB̂1 con-
tains IDs of original blocksa andc, among whichc is newly
learned in the previous time slot.S1 sends an advertisement
message containingc’s ID to S3 andP5, respectively. AfterP5

receives the advertisement message fromS3, it discovers that
block c is new to itself, so it obtains a coded block5a + 11c
from S3. All the other peers follow the same protocol. After
this round of dissemination, Fig. 4(C) illustrates the cache

contents at the beginning of the third time slot. Similarly,in
the third time slot,S1 advertises the IDs of newly acquired
blocks b and d to its neighbors. AfterP5 identifies thatb is
new, it acquires a coded block10a + 2b + 7c + 5d from S1.
After this round, all peers hold all four original blocks in coded
form, and the protocol execution ends in3 rounds.

As we can see from the protocol, peerj requests a coded
block from peeri only if the latter knows some original
blocks that itself does not have yet. In this way, peerj is
guaranteed to obtaininnovativecoded blocks for itself, with
coding coefficient vectors linearly independent to those ofits
cached blocks. Therefore, (a) if peerj has available space in
its cache and directly stores the received block, the rank of
its coefficient matrix is increased; (b) otherwise, by coding
the received block with one of the existing blocks, it will
also increase the rank of the combined coefficient matrix,
which the snapshot collector subsequently constructs during
the decoding process. When coded dissemination terminates,
each peer caches coded blocks that are linear combinations of
virtually all the original blocks in the current network. Asthe
coding coefficients are randomly chosen fromGF (2q) (q = 16
is enough in most cases), there is high probability for the
combined coefficient matrix from anyk or slightly more than
k coded blocks in the network to have the rank ofk, which
can thus be used to decodek original blocks.

We make two additional remarks about theEchelonproto-
col:

First, the iterative protocol execution at each peer does
not need to be carefully synchronized. While peers may be
designated to capture snapshots at the same time of a day,e.g.,
every minute/hour, they may actually collect measurementsat
different times due to clock difference. Furthermore,Echelon
message transmissions may be delayed for various lengths of
time, since only residual capacities at the peers are utilized.
In Echelon, as long as each peer captures snapshots at the
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same moment based on their local clocks and the clocks are
roughly synchronized (e.g.,using the Network Time Protocol),
the generated epoch numbers are unified, and snapshots of
the same epoch can be correctly coded together. As long as
every peer executes the protocol periodically with a period
t, the iterative protocol in each epoch is bound to terminate
successfully.Time slotsare just introduced in the protocol
description for better understanding and to facilitate analysis.

Second,Echelonprovides excellent resilience to peer dy-
namics in collecting the network diagnosis. When a new
snapshot peer joins the network, it can immediately participate
in the coded dissemination process and disseminate its local
measurements across the network. In the case of snapshot peer
departures or failures, as long as the peer has sent out its
captured snapshots and the network is still connected (which
is generally guaranteed in practice by having isolated peers
locate and connect to new neighbors), its snapshots are still
able to propagate throughout the entire network in coded form.
Therefore, they can still be successfully recovered by the
snapshot collector.

The pseudocode that implements theEchelonprotocol is
summarized in Table I.

C. Overhead analysis

We now analyze the messaging and computational overhead
in the coded dissemination process of each epoch. To simplify
our analysis, we assume that all snapshot peers capture snap-
shots and start protocol execution at the same time.

First, we discuss the number of rounds the protocol executes
before it terminates in each epoch. The number is decided by
the maximum number of hops for an original data block to
be distributed in its coded form, from the original snapshot
peer to the farthest peer. This is actually the diameter of the
network, usuallyO(lnn) for realistic richly connected peer-
to-peer networks. For example, in Fig. 4, it maximally takes
three hops for blockb to reach peerP5, and thus the protocol
terminates in3 rounds.

Let d be the average number of neighbors each peer has
in a network. The total number of advertisement messages
sent in each time slot across the entire network is at most
d ·n. Therefore, the overall number of advertisement messages
in each epoch isO(n ln n), and the number of coded data
messages delivered in each epoch is at mostO(n ln n) as well.

The coding coefficient overhead per data message depends
on the number of original blocks included, the size of the
Galois field (2q), and the number of bits used for a block
ID (r). In the extreme case that a coded block is the linear
combination of all the original blocks, its coefficient overhead
is k(r + q) bits, wherer ≈ log

2
k. When k scales up to

thousands, such coefficient overhead is still less than a few
KBytes, which is usually much smaller than the data size of
snapshots.

Next, we analyze the computational overhead and coding
delay at each peer, introduced by network coding. Such
overhead is mainly determined by the size of each data block,
and the number of coded blocks a peer combines to produce
a new block. The former is application-specific, decided by

individual diagnosis requirement. InEchelon, the number of
coded blocks used in network coding is upper-bounded by
the cache capacity at each peer, usually much smaller than
k. Therefore, the computational overhead is limited. Since the
snapshot collector aggregates snapshots and diagnoses peer-
to-peer sessions in a “postmortem” way, the coding delay is
not significant as well.

Finally, we discuss the number of peers the snapshot collec-
tor needs to probe to obtaink or slightly more thank coded
blocks for decoding. It relies on the number of resulting coded
blocks cached at each peer, which is decided by the number
of rounds the protocol executes, the number of neighbors each
peer has, and is upper-bounded by the cache capacity at a peer.

Based on the above analysis, we wish to further refine
our protocol to reduce the communication and computational
overhead of the protocol, while still guaranteeing large-scale
dissemination of each original snapshot in coded form. In what
follows, we investigate possible refinements to ourbaseline
Echelon protocol presented in this section, and make our
system highly configurable and flexible.

IV. REFINING AND CONFIGURING ECHELON

A. Refining the Advertising Step

In order to reduce the coded data traffic in the network,
we refine step1 in our baseline protocol, and disseminate the
coded messages in a gossip-like manner. In each time slot,
instead of advertising original blocks to all its neighbor peers,
a peer randomly selects a subset of its neighbors and forwards
the advertisement message to them. LetNumNeighborbe the
maximum number of neighbors selected at each peer. Step1
can be refined as follows:

Step 1 –Advertise. Peeri sends advertisement messages to
NumNeighborneighbors, selected uniformly at random from
all its neighbor peers. The advertisement message to neighbor
j contains IDs of all the original blocks which peeri has never
advertised to peerj.

With the refined protocol, as we may not wish to dissemi-
nate every original block to every peer eventually, we introduce
another parameterMaxRound. Instead of naturally terminating
as in the baseline protocol, the refined protocol executed ata
peer stops when the maximum number of rounds specified by
MaxRoundhas been reached.

If MaxRoundis set to a large value, the total number of
messages involved in protocol execution may not be reduced
eventually. Therefore, to actually reduce the bandwidth usage,
MaxRoundshould be set to numbers at the same magnitude
of that executed by the baseline protocol,O(ln n), or even
smaller. We note that even in this way, each original block is
still largely distributed over the network in coded form, which
can be illustrated as follows: at peeri, if a neighbor peerj
is not selected during the previous time slots but is chosen in
time slot t̄, the IDs of all peeri’s known original data blocks
are advertised to peerj, and a coded block combining all these
original blocks is sent toj in this round.

BesidesMaxRound, distribution of the original blocks also
depends on the value ofNumNeighbor:the more neighbors
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TABLE I

EchelonPSEUDOCODE EXECUTED AT PEERi IN TIME SLOTS t̄ = 1, 2, . . .

Notations: 6 coefficient vectorC = multiplyMatrix(R, Coeffs)
bDi: the set of coded blocks currently cached at peeri 7 packetizeC, corresponding original block IDs,b, and
mi: the cache capacity at peeri send the message to peerj
bBi: the ID set of the original blocks which peeri knows
cB′

i: the ID set of the original blocks newly learned in the Upon receiving a coded data message:
previous time slot 1 C′

← coefficient vector retrieved from the message
Coeffs: combined coefficient matrix of coded blocks inbDi 2 I ′

← original block IDs retrieved from the message

Coeffs[v]: coefficient vector of thevth coded block inbDi 3 b′ ← coded block contained in the message
Neighbors: the set of neighbor peers of peeri 4 for u = 1 to I ′.size

5 if I ′[u] /∈ bBi

Advertise block information: 6 bBi ← bBi ∪ I ′[u]

1 for u = 1 to Neighbors.size 7 cB′
i ← cB′

i ∪ I ′[u]

2 packetizecB′
i and send toNeighbors[u] 8 end if

3 end for 9 end for
4 cB′

i ← φ 10 if bDi.size< mi

11 bDi ← bDi ∪ b′

Upon receiving an advertisement message from peerj: 12 Coeffs[ bDi.size]← C′

1 I ← original block IDs retrieved from the message 13else
2 if there exists block IDI[u] /∈ bBi, ∀u = 1, . . . ,I.size 14 u←index of a randomly chosen block inbDi

3 send request for a coded block to peerj 15 R′
← a size-2 vector of randomly generated

4 end if coefficients fromGF (2q)

16 b̄← (b′, bDi[u])
Upon receiving a request message from peerj: 17 C̄ ←[C′, Coeffs[u]]
1 R← φ 18 new coded blockb′′ = multiplyVector(R′ ,̄b)
2 for u = 1 to bDi.size 19 new coefficient vectorC′′ = multiplyMatrix(R′,C̄)
3 R[u]←a randomly chosen coefficient fromGF (2q) 20 bDi[u]=b′′

4 end for 21 Coeffs[u]← C′′

5 new coded blockb = multiplyVector(R, bDi) 22 end if

each peer is sending data messages to, the more peers each
original data block is distributed onto in a coded form. When
more peers in the network hold an original data block, the
chances for its recovery in case of peer failures are higher.

To summarize, by configuring different values forNum-
Neighborand MaxRound, we can achieve different tradeoffs
between messaging overhead and failure tolerance using the
refinedEchelonprotocol.

B. Refining the Encoding Step

In order to reduce the coefficient overhead in the coded data
messages, we aim to reduce the number of original blocks
included in the linear combinations of the coded blocks. For
this purpose, we refine the encoding step in our baseline
protocol. At each peer, other than combining all the currently
cached coded blocks to produce a new coded block, it now
codes only those that contain the original blocks the neighbor
is seeking. Step2 and step3 in our baseline protocol are
modified in this regard:

Step 2 –Request. When peerj asks for a coded block from
peeri, it sends a requestcontaining IDs of the original blocks
that it is seeking from peeri.

Step 3 –Code and Deliver. Upon the request from neighbor
peer j, peer i generates a new coded block by the linear

combination of its currently cached coded blocks,which
contain the original blocks peerj is seeking.

With a simple example based on Fig. 4, we illustrate the
effectiveness of this refinement. In the second time slot, after
S1 finds outS3 knows original blocksb and d, it requests a
coded block containing those two blocks fromS3. With the
refined protocol,S3 combines the two blocks and sends toS1

a coded block in the form of12b+7d. Compared to the coded
block 2a + 6b + c + 9d generated with the baseline protocol,
delivering12b+7d involves a much less coefficient overhead.

In addition, with this refinement, the computational over-
head of network coding is reduced, as fewer coded blocks are
combined to produce a new block. However, all the benefits
come at the cost of possible reduced linear independence of
coefficient vectors of the coded blocks cached at different
peers, as they are now generated from fewer existing coded
blocks. Therefore, this encoding refinement also introduces a
tradeoff between the coefficient/computational overhead and
failure tolerance of the system.

We introduce another boolean parameterCodeAll to
indicate whether this refinement is incorporated inEchelon
or not. A true value represents the baseline protocol,i.e., a
new coded block is generated by combining all existing blocks.

Altogether, we have introduced three parameters into the
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Echelon protocol: NumNeighbor, MaxRound and CodeAll.
Being highly configurable, the refinedEchelonprotocol can
meet the requirements of different applications better. Inthe
following section, with extensive simulation experiments, we
demonstrate the effectiveness of these parameters.

V. EVALUATIONS

In this section, we conduct an in-depth empirical study
of the proposed baseline and refinedEchelon protocols in
simulated peer-to-peer environments. In our experiments,we
simulate the coded dissemination in one epoch and evaluate
the following performance metrics:

⊲ Rounds: the maximum number of time slots the iterative
protocol is executed at each peer

⊲ Decoding Efficiency: the average number of coded
blocks needed to obtain ak × k full-rank coefficient
matrix for decoding, divided byk

⊲ Number of Peers to Probe: the average number of peers
the snapshot collector has to probe to obtaink coded
blocks with linearly independent coefficient vectors.

⊲ Messaging Intensity: the average number of messages
sent by each peer in each time slot

⊲ Coefficient Overhead: the average size of coefficient part
(coefficients & original block IDs) in a data message

Decoding efficiency and number of peers to probe reflect
the failure tolerance of the system: the fewer coded blocks
acquired for decoding, the fewer peers the snapshot collector
probes, the larger percentage of peer failures the system can
tolerate. The other metrics represent messaging overhead in
the coded dissemination of each epoch.

To evaluate the protocol in realistic network settings, we
generate various random network topologies with the BRITE
topology generator. The parameters to be investigated in our
experiments include network parameters — network size (n),
ratio of snapshot peers (k/n), average peer neighbor number
(d), average peer cache capacity, and protocol parameters —
MaxRound, NumNeighbor, CodeAll. As the general experi-
mental setting,k/n is set to0.8 in each network,GF (216) is
used in network coding, and the average peer cache capacity
for each epoch is100.

A. Performance of baseEchelonprotocol

We first evaluate the baseline protocol itself, and then
compare it with an uncoded random block dissemination
scheme.

1) Dissemination speed:Fig. 5 shows the number of rounds
the baseline protocol executes, until every peer has received
every original block in coded form. The protocol stops quickly
within number of rounds at the log scale of the network size,
O(lnn), which conforms well to our analysis in Sec. III-
C. When each peer has more neighbors in a network, the
protocol terminates faster as the network diameter is smaller.
The speed represents no difference with different snapshotpeer
percentages, since the network diameter remains the same.
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Fig. 5. Dissemination speed with the baselineEchelonprotocol.
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Fig. 6. Failure tolerance with the baselineEchelonprotocol: (A) decoding
efficiency and (C) number of peers to probe in networks of different sizes
and neighbor numbers; (B) decoding efficiency and (D) number ofpeers to
probe with different peer cache capacities in a network ofn = 500, d = 8.

2) Failure tolerance: In each network, after the coded dis-
semination terminates, the snapshot collector randomly selects
one peer after another, until it findsk coded blocks with
linearly independent coding coefficient vectors. We repeatthe
experiment for100 times, and report the average number of
coded blocks aggregated for decoding and the average number
of peers that provide these blocks.

Fig. 6(A) and (B) demonstrate the excellent linear indepen-
dence of the resulting cached blocks in the network. With all
parameter settings, any randomly selectedk or slightly more
than k coded blocks can be used for successful decoding. A
careful study of Fig. 6(A) reveals that the decoding efficiency
is even better when each peer has more neighbors in the
network and thus receives more coded blocks in each round.
In this case, its new blocks are generated from more existing
blocks, leading to better linear independence in the system.
Fig. 6(B) shows slightly better linear independence in the
system with smaller peer cache capacity, as each resulting
cached block contains more original blocks when received
blocks are coded onto each other in the cache.
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Fig. 7. Messaging overhead in the baselineEchelonprotocol.

From Fig. 6(D), we observe that when the cache capacity is
small, the number of peers to probe is k

cache capacity, as peers
cache coded blocks as many as their cache capacity allows;
when the caches are relatively large, the number remains
consistent as now the number of cached blocks is decided by
neighbor number and the number of rounds a peer executes the
protocol. When the cache capacity is fixed at100, Fig. 6(C)
shows the slow increase of the probed peer number with the
network size. When the average neighbor numberd is larger,
the number is much smaller, as each peer caches more blocks
when the protocol terminates. Based on these observations,we
find that the number of probed peers can be further reduced, if
we incorporate the following protocol: if there is still available
cache space at a peer after the protocol execution terminates,
the peer can request more coded blocks from its neighbors to
fill in the cache. However, this will introduce another tradeoff
between messaging overhead and failure tolerance.

3) Messaging overhead:Fig. 7(A) demonstrates that the
number of coded data messages is much smaller than that of
advertisement messages, especially whend is larger. Thanks
to network coding, a large number of original blocks can be
disseminated with much fewer coded data messages.

In our experiments, each coding coefficient takes2 bytes
(chosen fromGF (216)), and a block ID is a2-byte integer as
well (identifying as many as216 peers). From Fig. 7(B), we
observe that in a network with up to1000 peers (800 original
blocks ask/n = 0.8), the coefficient overhead is less than1.1
KBytes, representing an average number of275 original blocks
included in the linear combinations. In addition, the coefficient
overhead drops a lot when peers have more neighbors, which
represents the case in realistic networks.

4) Comparison with uncoded random dissemination:In
order to further validate the advantages of applying network
coding, we compare our protocol with an uncoded random
block dissemination scheme, which goes as follows:

In each time slot, every peer exchanges its block availability
with its neighbors, and retrieves new original blocks from each
other. When the cache at a peer has vacancy, a received block
is directly stored; otherwise, the peer randomly selects an
existing block in its cache and replaces it with the new block.

With this scheme, each peer also records the IDs of blocks
that it has ever received. The protocol terminates when every
peer has learned IDs of all the data blocks in the network. In
this way, each peer eventually caches a random subset out of
all the existing snapshots.

Comparing Fig. 8(A) with Fig. 5, we find the uncoded
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Fig. 8. Performance of an uncoded random dissemination scheme.

random dissemination terminates much slower thanEchelon.
Due to its random block replacement, the speed for one data
block to propagate throughout the entire network has been
much slowed down.

The comparisons between Fig. 8(B) and Fig. 6(A), Fig. 8(C)
and Fig. 6(C) reveal the prominent advantage of network
coding in enhancing failure tolerance of the network. With
the uncoded scheme, the number of blocks aggregated by
the snapshot collector in order to obtain allk snapshots
becomes times larger thank, and the number of probed peers
increases dramatically as well. For example, in the200-peer
network (k = 160 as k/n = 0.8), although each peer caches
100 different snapshots (cache capacity is100), the snapshot
collector still needs to probe6 peers to get all the snapshots.
Based on our observation, this is mainly caused by the “last
block” problem,i.e., the snapshot collector has to access lots
of peers to find the last few missing blocks. This comparison
result clearly demonstrates the effectiveness of network coding
to avoid the “last block” problem.

In addition, comparing Fig. 8(D) with Fig. 7(A), we observe
that the uncoded dissemination brings much higher messaging
intensity. Considering the number of rounds it executes is also
larger than that ofEchelon, the total number of messages
involved in the uncoded dissemination is much larger.

In summary, we conclude that network coding plays a sig-
nificant role inEchelon, by providing much better scalability
and failure tolerance with much less messaging overhead.

B. Effectiveness of advertising refinement

Next, we investigate the performance ofEchelonwith the
advertisement refinement proposed in Sec. IV-A, with respect
to different protocol parametersMaxRoundandNumNeighbor.
In these experiments, the average number of known neighbors
at each peer in each network is8.

We first study the impact ofMaxRoundon failure tolerance
of the resulting system. As we know, the more rounds the



9

5 10 15 20 25 30 35 40
0

0.4

0.8

1.2

1.6

2

2.4

MaxRound

D
ec

od
in

g 
ef

fic
ie

nc
y

 n=500, NumNeighbor=1
 n=500, NumNeighbor=2
 n=1000, NumNeighbor=1
 n=1000, NumNeighbor=2

0

50

100

150

200

250

MaxRound

N
um

be
r 

of
 p

ee
rs

 to
 p

ro
be

 n=500, NumNeighbor=1
 n=500, NumNeighbor=2
 n=1000, NumNeighbor=1
 n=1000, NumNeighbor=2

5 10 15 20 25 30 35 40

(A) (B)

(C) (D)

0

0.4

0.8

1.2

1.6

2

2.4

D
ec

od
in

g 
ef

fic
ie

nc
y

 NumNeighbor=1
 NumNeighbor=2
 NumNeighbor=4
 NumNeighbor=6
 NumNeighbor=all

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

n

0

20

40

60

80

100

120

N
um

be
r 

of
 p

ee
rs

 to
 p

ro
be

 NumNeighbor=1
 NumNeighbor=2
 NumNeighbor=4
 NumNeighbor=6
 NumNeighbor=all

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

n

Fig. 9. Failure tolerance inEchelonwith the advertising refinement.
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Fig. 10. Messaging overhead inEchelonwith the advertising refinement.

protocol executes, the more peers each original block is
distributed onto in coded form, the better failure tolerance
the resulting system has. This is validated in Fig. 9(A)
and (B). However, even in the extreme case that each peer
only advertises to one neighbor in each round, the decoding
efficiency quickly approaches1 within 10 rounds, and the
number of peers to probe drops quickly as well. This validates
our analysis in Sec. IV-A that even whenMaxRoundis set
to a small value, each original block can still be effectively
distributed, thanks to the use of network coding.

Next, we setMaxRoundto 10 and investigate the effect of
the other protocol parameter,NumNeighbor.

Fig. 9(C) and (D) show that with the increase ofNumNeigh-
bor, failure tolerance quickly improves. Even a slight increase
from 1 to 2 results in a great improvement. However, the best
result is always achieved when the advertisement messages are
forwarded to all neighbors,i.e., the baseline protocol case.

Fig. 10 reveals that the messaging overhead is signifi-
cantly reduced when the peers are not advertising to all their
neighbors, not only in terms of data messaging intensity, but
also the average coefficient size in each data message. This
is because whenNumNeighboris smaller, each peer knows
fewer original blocks, and therefore the number of coding
coefficients included in each data message becomes smaller.

C. Effectiveness of encoding refinement

Finally, we examine the effect of encoding refinement dis-
cussed in Sec. IV-B. To this end, four schemes are compared,
which are implemented respectively by setting the protocol
parametersCodeAllandNumNeighborto different values:

• CodeAll = true, NumNeighbor = all: the baselineEchelon
protocol

• CodeAll = false, NumNeighbor = all: the Echelonproto-
col with encoding refinement only

• CodeAll = true, NumNeighbor = 2: theEchelonprotocol
with advertising refinement only

• CodeAll = false, NumNeighbor = 2: theEchelonprotocol
with both advertising and encoding refinements

Fig. 11(A) and (B) show slightly deteriorated decoding
efficiency and increased number of probed peers when the
encoding refinement is applied, due to increased linear depen-
dence in the network by coding from fewer cached blocks.
Fig. 11(C), on the other hand, demonstrates the coefficient
overhead is much less when encoding refinement takes effect,
as it aims to include in the new coded blocks only those
original blocks requested by a neighbor. In addition, we
observe that the effect of encoding refinement in reducing
coefficient overhead is more significant than that of the ad-
vertising refinement, and the combination of both achieves the
best results.

VI. RELATED WORK

There exists little literature that touches upon the topic of
diagnosing large-scale systems with peer-to-peer protocols.
Stutzbachet al. [5] design a crawler to capture snapshots
of Gnutella network, which focuses on accuracy of the
captured snapshots and leverages the two-tier topology of
such networks. NetProfiler [6] is a peer-to-peer infrastructure
proposed for profiling wide-area networks, which aggregates
information along DHT-based attribute hierarchies and thus
may not adapt well to high peer churn rates.

Astrolabe [7] aggregates information for distributed system
monitoring, with gossip-based information distribution and
replication. Compared to the coded dissemination inEchelon,
such uncoded dissemination and replication may involve large
bandwidth and storage costs.

As data is disseminated and cached in a distributed fashion
in Echelon, a reader may confuseEchelon with those dis-
tributed storage systems utilizing random linear coding [8],
[9]. While both target at providing better failure tolerancefor
data aggregation, they represent fundamental differences. First,
original snapshots inEchelonare produced in a completely
decentralized fashion, while those systems disseminate parts
of a centrally generated file. Second, the file is only coded
at its origin in a distributed storage system. InEchelon, it
is impossible to code from all the original blocks in such
a centralized fashion, and a novel way of using randomized
network coding is proposed to achieve distributed encoding.

Recently, random linear coding has also been utilized in sen-
sor networks for failure tolerant aggregation of distributed data
[10], [11], [12]. In both Dimakiset al. [10] and Rabbatet al.
[11]’s work, original data is distributed and encoding is only
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Fig. 11. Comparison of the baseline and refinedEchelonprotocols.

performed on the destination sensor nodes, in order to store
them in a coded form. Compared toEchelon, such uncoded
distribution involves larger messaging overhead. Wanget al.
[12] propose a partial network coding scheme for continuous
data collection, which removes obsolete original data fromthe
stored coded data without the need of decoding. In contrast
to these sensor network applications,Echelonutilizes network
coding for diagnosing large-scale peer-to-peer networks,which
represents a more practical scenario.

Network coding was first proposed to achieve the maximum
capacity of a multicast network [1], [2], [4]. As mentioned ear-
lier, other than bandwidth efficiency,Echelonalso utilizes the
significant advantages of block diversity and failure tolerance
brought by randomized network coding.

In addition, most existing work in network coding is the-
oretical, and only a few discuss its practical implementation.
Ho et al. [13] propose an asynchronous algorithm for network
coding in cyclic networks, which requires the constructionof
an acyclic topology first. A practical network coding system
is proposed by Chouet al. [14], which tackles cycles by
encoding from already received blocks only.Echelonpresents
a more complicated scenario, and thus employs a practical
iterative network coding approach. Avalanche [15] represents
another practical content distribution system using randomized
network coding. Different fromEchelon, all its content origi-
nates from a same server, and each coded block is guaranteed
to contain all the original blocks. The objective ofEchelon
is to disseminate the original blocks, which are produced in
a completely distributed fashion, over the entire network in
coded form. In this way, a complete copy of all original
snapshots can be recovered from the live peers, even in cases
of large-scale peer failures.

VII. C ONCLUSION

We conclude this paper by reinforcing our belief that
monitoring and diagnosis of large-scale peer-to-peer sessions
represent a novel and critical application. Towards efficient
diagnosis construction, we have presentedEchelon, a light-
weighted protocol to disseminate peer snapshots over the entire
network with network coding. With such coded dissemination,
the measurements collected at all peers, including those that
have failed before the aggregation, can be effectively recovered
by simply probing a random subset of the existing peers. Uti-
lizing randomized network coding, the dissemination enjoys

significant advantages of being bandwidth efficient, scalable
and extremely failure tolerant. Motivated by the positive
experimental results, we are confident in the effectivenessof
Echelonin real-world scenarios. In our ongoing work, we are
working on the implementation ofEchelon, and look forward
to leveraging it in the diagnosis of large-scale peer-to-peer
applications over the Internet.
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