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Abstract—Due to peer instability and time-varying peer up-
load bandwidth availability in live peer-to-peer (P2P) streaming
channels, it is preferable to provision adequate levels of stable
upload capacities at dedicated streaming servers, in order to
guarantee the streaming quality in all channels. Most commercial
P2P streaming systems have resorted to the practice of over-
provisioning upload capacities on streaming servers. In this
paper, we have performed a detailed analysis on 400 GB and
7 months of run-time traces from UUSee, a commercial P2P
streaming system, and observed that available capacities on
streaming servers are not able to keep up with the increasing
demand imposed by hundreds of channels. We propose a novel
online server capacity provisioning algorithm that proactively
adjusts the server capacities available to each of the concurrent
channels, such that the supply of server bandwidth in each
channel dynamically adapts to the forecasted demand, taking
into account the number of peers, the streaming quality, and the
priorities of channels. The algorithm is able to learn over time,
and has full ISP awareness to maximally constrain P2P traffic
within ISP boundaries. To evaluate the effectiveness of our solu-
tion, our experimental studies are based on an implementation
of the algorithm with actual channels of P2P streaming traffic,
with real-world traces replayed within a server cluster.

I. INTRODUCTION

With the recent success and commercial deployment of live
P2P streaming [1], hundreds of media channels are routinely
broadcast to millions of users at any given time. The essence of
P2P streaming is the use of peer upload bandwidth to alleviate
the load on dedicated streaming servers [2]. Most existing
research has thus far focused on peer strategies: Should a
mesh or tree topology be constructed? What incentives can be
provisioned to encourage peer bandwidth contribution? How
do we cope with peer churn and maintain the quality of live
streams? We recognize the importance of these open research
challenges, as their solutions seek to maximally utilize peer
upload bandwidth, leading to minimized server costs.

With this paper, however, we shift our focus to the stream-
ing servers. Such refocusing on servers is motivated by our
detailed analysis of 7 months and 400 GB worth of real-
world traces from hundreds of streaming channels in UUSee
[3], a large-scale commercial P2P live streaming system in
China. As all other state-of-the-art live streaming systems
(including PPLive), in order to maintain a satisfactory and
sustained streaming quality, UUSee has so far resorted to
the practice of over-provisioning server capacities to satisfy
the streaming demand from peers in each of its channels.
Contrary to common belief, we have observed that available
capacities on streaming servers are not able to keep up with

the increasing demand from hundreds of channels. In response,
we advocate to allocate limited server capacities to each of the
channels, in order to maximally utilize dedicated servers.

While it is certainly a challenge to determine how much
bandwidth to provision on streaming servers to accommodate
the streaming demand of all concurrent channels, the challenge
is more daunting when we further consider the conflict of
interest between P2P solution providers and ISPs. P2P appli-
cations have significantly increased the volume of inter-ISP
traffic, which in some cases leads to ISP filtering. We seek to
design effective provisioning algorithms on servers with the
awareness of ISP boundaries to minimize inter-ISP traffic.

In this paper, we present Ration, an online server capacity
provisioning algorithm to be carried out on a per-ISP basis.
Ration dynamically computes the minimal amount of server
capacity to be provisioned to each channel inside the ISP, in
order to guarantee a desired level of streaming quality for
each channel. With the analysis of our real-world traces, we
have observed that the number of peers and their contributed
bandwidth in each channel are dynamically varying over time,
and significantly affect the required bandwidth from servers.
Ration is designed to actively predict the bandwidth demand
in each channel in an ISP with time series forecasting and
dynamic regression techniques, utilizing the number of active
peers, the streaming quality, and the server bandwidth usage
within a limited window of recent history. It then proactively
allocates server bandwidth to each channel, respecting the
predicted demand and priority of channels. To show the
effectiveness of Ration, it has been implemented in streaming
servers serving a mesh-based P2P streaming system. In a
cluster of dual-CPU servers, the system emulates real-world
P2P streaming by replaying the scenarios captured by traces.

The remainder of this paper is organized as follows. In
Sec. II, we motivate our focus on servers by showing our
analysis of 7 months of traces from UUSee. In Sec. III,
we present the design of Ration, and discuss how it may
be deployed with ISP awareness to serve real-world P2P
streaming systems. Sec. IV presents our experimental results
evaluating Ration by replaying traces in a P2P streaming
system running in a server cluster. We discuss related work
and conclude the paper in Sec. V and Sec. VI, respectively.

II. REFOCUSING ON SERVERS: EVIDENCE FROM

REAL-WORLD TRACES

Why shall we refocus our attention to dedicated streaming
servers in P2P live streaming systems? Starting Sep. 2006,



we have continuously monitored the performance statistics
of a real-world commercial P2P streaming platform, offered
by UUSee Inc., a leading P2P streaming solution provider
with legal contractual rights with mainstream content providers
in China. As other such systems such as PPLive, UUSee
maintains a sizable array of 150 dedicated streaming servers,
to support its P2P streaming topologies with hundreds of
channels to millions of users, mostly in 400 Kbps media
streams. UUSee utilizes the “pull-based” design on mesh P2P
topologies, that allows peers to serve other peers (“partners”)
by exchanging media blocks in a sliding window of the stream.

To maximally utilize peer upload bandwidth and alleviate
server load, UUSee incorporates a number of algorithms in
peer selection. Each peer applies an algorithm to estimate
its maximum upload capacity, and continuously estimates its
aggregate instantaneous sending throughput to its partners.
If its estimated sending throughput is lower than its upload
capacity for 30 seconds, it will inform one of the tracking
servers that it is able to receive new connections. The tracking
servers keep a list of such peers, and assign them upon
requests of partners from other peers. During the streaming
process, neighboring peers also recommend known peers to
each other based on their current streaming quality, represented
by the number of available blocks in their current playback
buffers. A peer may contact a tracking server again to obtain
additional peers with better qualities, once it has experienced
low buffering levels for a sustained period of time.

To inspect the run-time behavior of UUSee P2P streaming,
we have implemented extensive measurement and reporting
capabilities within its P2P client application. Each peer collects
a set of its vital statistics, and reports to dedicated trace
servers every 5 minutes via UDP. The statistics include its
IP address, the channel it is watching, its buffer availability
map, the number of available blocks in its current playback
buffer (henceforth referred to as the buffer count), as well as
a list of all its partners, with their corresponding IP addresses,
TCP/UDP ports, and current sending/receiving throughput
to/from each partner. Each dedicated streaming server in
UUSee utilizes a similar P2P protocol as deployed on regular
peers, is routinely selected to serve the peers, and reports its
related statistics periodically as well.
A. Insufficient “supply” of server bandwidth

What have we discovered from the traces, that represent
snapshots of the system every 5 minutes throughout the 7
months? The first observation we made is related to the in-
sufficient “supply” of server bandwidth, as more channels are
added over time. Such insufficiency has gradually affected the
streaming quality, in both popular and less popular channels.

In order to show bandwidth usage over 7 months and at
different times of a day within one figure, we choose to show
all our 5-minute measurements on representative dates in each
month. One such date, February 17 2007, is intentionally
chosen to coincide with the Chinese New Year event, with
typical flash crowds due to the broadcast of a celebration
show on a number of the channels. Fig. 1(A) shows the total
server bandwidth usage on 150 streaming servers. We may
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Fig. 1. The evolution of server bandwidth, channels, and streaming quality
over a period of 7 months.

observe that an increasing amount of server bandwidth has
been consumed over time, but stabilizing in January 2007. This
rising trend can be explained by the rapidly increasing number
of channels deployed during this period, as shown in Fig. 1(B).
The interesting phenomenon that such bandwidth usage has
stabilized, even during the Chinese New Year flash crowd, has
led to the conjecture that the total uplink capacity of all servers
has been reached. The daily variation of server bandwidth
usage coincides with the daily pattern of peer population.

Our conjecture that server capacities have saturated is
confirmed when we investigate the streaming quality in each
channel. The streaming quality in a channel at each time
is evaluated as the percentage of high-quality peers in the
channel, where a high-quality peer has a buffer count of more
than 80% of the total size of its playback buffer. Representative
results with a popular channel (CCTV1, with more than 10,000
concurrent users) and a less popular channel (CCTV12, with
fewer than 1000 concurrent users) are shown in Fig. 1(C) and
(D), respectively. The streaming quality of both channels has
been decreasing over time, as server capacities are saturated.
During the Chinese New Year flash crowd, the streaming
quality of CCTV1 degraded significantly, due to the lack of
bandwidth to serve a flash crowd of users in the channel.

Would it be possible that the lack of peer bandwidth contri-
bution has overwhelmed the servers? As we noted, the protocol
in UUSee uses optimizing algorithms to maximize peer upload
bandwidth utilization, which in our opinion represents one
of the state-of-the-art peer strategies in P2P streaming. The
following back-of-the-envelope calculation with data from the
traces may be convincing: At one time on October 15, 2006,
about 100, 000 peers in the entire network have each achieved
a streaming rate around 400 Kbps, by consuming a bandwidth
level of 2 Gbps from the servers. The upload bandwidth
contributed by peers can be computed as 100, 000 × 400 −
2, 000, 000 = 38, 000, 000 Kbps, which is 380 Kbps per peer
on average. This represents quite an achievement, as most
of the UUSee clientele are ADSL users in China, with a
maximum of 500 Kbps upload capacity.

Indeed, server capacities have increasingly become a bot-
tleneck in real-world P2P live streaming solutions.
B. Increasing volume of inter-ISP traffic

The current UUSee protocol is not aware of ISPs. We now
investigate the volume of inter-ISP traffic during the 7-month



period, computed as the throughput sum of all links across
ISP boundaries at each time, by mapping IP addresses to the
ISPs using a database from UUSee. Fig. 2 reveals that both
the inter-ISP peer-to-peer and server-to-peer traffic have been
increasing, quadrupled over the 7-month period, due to the
increased number of channels and peers.
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Fig. 2. The volume of inter-ISP traffic increases over time.

In China, the two nation-wide ISPs, Netcom and Telecom,
charge each other based on the difference of inter-ISP traffic
volume in both directions, and regional ISPs are charged based
on traffic to and from the nation-wide ISPs. Both charging
mechanisms have made it important for ISPs to limit inter-
ISP traffic. Considering the large and persistent bandwidth
consumption for live streaming, we believe that P2P streaming
systems should be designed to minimize inter-ISP traffic,
which remains one of our objectives in this paper.

C. What is the required server bandwidth for each channel?
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Fig. 3. Relationship among server upload bandwidth, number of peers, and
streaming quality for channel CCTV1.

To determine the amount of server bandwidth needed for
each channel, we wish to explore the relation among server
upload bandwidth usage, the number of peers, and the achieved
streaming quality in each channel. Based on a detailed trace
analysis, we have identified no strong correlation among the
quantities over a longer period of time. For example, Fig. 3(A)
plots the correlation of the quantities for channel CCTV1 in
a period of three days (February 13-15 2007). There do not
exist any evident correlations in this period.

Nevertheless, if we focus on a shorter time scale, the
correlation becomes more evident. For example, Fig. 3(B)-1
plots the correlation between server upload bandwidth usage
and the streaming quality during a three-hour period (8pm-
11pm) on February 13, which exhibits a positive square-root
relation between the two quantities. Meanwhile, a negative
correlation is shown to exist between the number of peers and
the streaming quality, in Fig. 3(B)-2. We have also observed
that the shape of such short-term correlation varies from time

to time. For example, during the same time period on February
17, the relation between the number of peers and the streaming
quality represents a reciprocal curve, as shown in Fig. 3(B)-3.
We have observed from the traces that such variations exist in
other channels as well, which can be attributed to the time-
varying peer upload bandwidth availability in the channels.

All of our observations thus far point to the challenging
nature of our problem at hand: how much server bandwidth
should we allocate in each channel to assist peers in each ISP?

III. RATION: ONLINE SERVER CAPACITY PROVISIONING

Our proposal is Ration, an online server capacity provi-
sioning algorithm to be carried out on a per-ISP basis, that
dynamically assigns a minimal amount of server capacity to
each channel to achieve a desired level of streaming quality.

A. Problem formulation

We consider a P2P live streaming system with multiple
channels (such as UUSee). We assume that the tracking server
in the system is aware of ISPs: when it supplies any requesting
peer with information of new partners, it first assigns peers (or
dedicated servers) with available upload bandwidth from the
same ISP. Only when no such peers or servers exist, will the
tracking server assign peers from other ISPs.

The focus of Ration is the dynamic provisioning of server
capacity in each ISP, carried out by a designated server in
the ISP. In the ISP that we consider, there are a total of M
concurrent channels to be deployed, represented as a set C.
There are nc peers in channel c,∀c ∈ C. Let sc denote the
server upload bandwidth to be assigned to channel c, and qc

denote the streaming quality of channel c, i.e., the percentage
of high-quality peers in the channel that have a buffer count
of more than 80% of the size of its playback buffer. Let U
be the total amount of server capacity to be deployed in the
ISP.1 We assume a priority level pc for each channel c, that
can be assigned different values by the P2P streaming solution
provider to reflect the relative importance of the channels.

At each time t, Ration proactively computes the amount
of server capacity sc

t+1 to be allocated to each channel c for
time t + 1, that achieves optimal utilization of the limited
overall server capacity across all the channels, based on their
priority and popularity (as defined by the number of peers in
the channel) at time t + 1. Such an objective can be formally
represented by the optimization problem Provision(t+1) as
follows (∀t = 1, 2, . . .), in which a streaming quality function
F c

t+1 is included to represent the relationship among qc, sc

and nc at time t + 1:
Provision(t+1):

max
∑

c∈C
pcnc

t+1q
c
t+1 (1)

subject to ∑
c∈C sc

t+1 ≤ U,

qc
t+1 = F c

t+1(s
c
t+1, n

c
t+1), ∀c ∈ C, (2)

0 ≤ qc
t+1 ≤ 1, sc

t+1 ≥ 0, ∀c ∈ C.

1U can be implemented in practice with a number of servers deployed,
with the number decided by U and the upload capacity of each server.



Weighting the streaming quality qc
t+1 of each channel c with

its priority pc, the objective function in (1) reflects our wish to
differentiate channel qualities based on their priorities. With
channel popularity nc

t+1 in the weights, we aim to provide
better streaming qualities for channels with more peers. Noting
that ncqc represents the number of high-quality peers in
channel c, in this way, we guarantee that, overall, more peers
in the network can achieve satisfying streaming qualities.

The challenges in solving Provision(t+1) at time t to derive
the optimal values of sc∗

t+1,∀c ∈ C, lie in (1) the uncertainty
of the channel popularity nc

t+1, i.e., the number of peers in
each channel in the future, and (2) the dynamic relationship
F c

t+1 among qc, sc, and nc of each channel c at time t + 1.
In what follows, we present our solutions to both challenges.

B. Active prediction of channel popularity

We first estimate the number of active peers in each channel
c at the future time t + 1, i.e., nc

t+1,∀c ∈ C. Existing work
has been modeling the evolution of the number of peers in
P2P streaming systems based on Poisson arrivals and Pareto
life time distributions (e.g., [4]). We argue that these models
represent ideal simplifications of real-world P2P live streaming
systems, where peer dynamics are actually affected by many
random factors. To dynamically and accurately predict the
number of peers in a channel, we employ time series forecast-
ing techniques. We treat the number of peers in each channel c,
i.e., nc

t , t = 1, 2, . . ., as an unknown random process evolving
over time, and use the recent historical values to forecast the
most likely values of the process in the future.

As the time series of channel popularity is generally non-
stationary (i.e., its values do not vary around a fixed mean),
we utilize the autoregressive integrated moving average model,
ARIMA(p,d,q), which is a standard linear predictor to tackle
non-stationary time series. With ARIMA(p,d,q), a time series,
zt, t = 1, 2, . . ., is differenced d times to derive a station-
ary series, wt, t = 1, 2, . . ., and each value of wt can be
expressed as the linear weighted sum of p previous values
in the series, wt−1, . . . , wt−p, and q previous random errors,
at−1, . . . , at−q . The employment of an ARIMA(p,d,q) model
involves two steps: (1) model identification, i.e., the decision
of model parameters p, d, q, and (2) model estimation, i.e.,
the estimation of p + q coefficients in the linear weighted
summation.

For model identification of time series nc
t , t = 1, 2, . . .,

we have derived d = 2 based on the differencing analysis
of actual channel popularity time series from the UUSee
traces, and have derived p = 0 and q = 1 with standard
model identification techniques using autocorrelation and par-
tial autocorrelation functions for the differenced time series
([5], pp. 187). Due to space constraints, interested readers
are referred to our technical report [6] for details. Having
identified an ARIMA(0,2,1) model, the channel popularity
prediction for time t + 1, n̄c

t+1, can be expressed as follows:

n̄c
t+1 = 2nc

t − nc
t−1 + at+1 − θat, (3)

where θ is the coefficient for the random error term at and

can be estimated with a least squares algorithm. When we use
(3) for prediction in practice, the random error at future time
t + 1, i.e., at+1, can be treated as zero, and the random error
at time t can be approximated by at = nc

t − n̄c
t [5]. Therefore,

the prediction function is simplified to
n̄c

t+1 = 2nc
t − nc

t−1 − θ(nc
t − n̄c

t). (4)

To dynamically refine the model for accurate prediction of
popularity of a channel c over time, we propose to carry out the
forecasting in a dynamic fashion: To start, the ARIMA(0,2,1)
model is trained with channel popularity statistics in channel c
in the most recent N1 time steps, and the value of coefficient
θ is derived. Then at each following time t, n̄c

t+1 is predicted
using (4), and the confidence interval of the predicted value (at
a certain confidence level, e.g., 95%) is computed. When time
t + 1 comes, the actual number of peers, nc

t+1, is collected
and tested against the confidence bounds. If the real value lies
out of the confidence interval and such prediction errors have
occurred T1 out of T2 consecutive times, the forecasting model
is retrained, and the above process repeats.

C. Dynamic learning of the streaming quality function

Next, we dynamically derive the relationship among stream-
ing quality, server bandwidth usage, and the number of peers
in each channel c, denoted as the streaming quality function
F c in (2), with a statistical regression approach.

From the traces, we have observed qc ∝ (sc)αc

at short
time scales, where αc is the exponent of sc, e.g., qc ∝ (sc)0.5

in Fig. 3(B)-1. We also observed qc ∝ (nc)βc

, where βc is
the exponent of nc, e.g., qc ∝ (nc)−1 in Fig. 3(B)-3. As
we have made similar relationship observations from a broad
trace analysis of channels over different times, we model the
streaming quality function as

qc = γc(sc)αc

(nc)βc

, (5)

where γc > 0 is a weight parameter. Such a function model
is advantageous in that it can be transformed into a multiple
linear regression problem, by taking logarithm at both sides:

log(qc) = log(γc) + αc log(sc) + βc log(nc).

Let Qc = log(qc), Sc = log(sc), N c = log(nc), Γc =
log(γc). We derive the following multiple linear regression
problem

Qc = Γc + αcSc + βcN c + εc, (6)

where Sc and N c are regressors, Qc is the response variable,
and εc is the error term. Γc, αc, and βc are regression param-
eters, which can be estimated with least squares algorithms.

As we have observed in trace analysis that the relationship in
(5) is evident on short time scales but varies over a longer term,
we dynamically re-learn the regression model in (6) for each
channel c in the following fashion: To start, the designated
server trains the regression model with collected channel popu-
larity statistics, server bandwidth usage and channel streaming
quality during the most recent N2 time steps, and derives the
values of regression parameters. At each following time t, it
uses the model to estimate the streaming quality based on
the used server bandwidth and the collected number of peers



in the channel at t, and examines the fitness of the current
regression model by comparing the estimated value with the
collected actual streaming quality. If the actual value exceeds
the confidence interval of the predicted value for T1 out of T2

consecutive times, the regression model is retrained with the
most recent historical data.

We note that the signs of exponents αc and βc in (5) reflect
positive or negative correlations between the streaming quality
and its two deciding variables, respectively. Intuitively, we
should always have 0 < αc < 1, as the streaming quality
could not be worse when more server capacity is provisioned,
and its improvement slows down with more and more server
capacity provided, until it finally reaches the upper bound of 1.
On the other hand, the sign of βc may be uncertain, depending
on the peer upload bandwidth availability at different times: if
more peers with high upload capacities (e.g., Ethernet peers)
are present, the streaming quality can be improved with more
peers in the channel (βc > 0); otherwise, more peer joining
the channel could lead to a downgrade of the streaming quality
(βc < 0).
D. Optimal allocation of server capacity

Based on the predicted channel popularity and the most
recently derived streaming quality function for each channel,
we are now ready to proactively assign the optimal amount
of server capacity to each channel for time t + 1, by solving
problem Provision(t+1) in (1). Replacing qc with its function
model in (5), we transform the problem in (1) into:

Provision(t+1)’:
max G (7)

subject to ∑
c∈C sc

t+1 ≤ U, (8)

sc
t+1 ≤ Bc

t+1, ∀c ∈ C, (9)

sc
t+1 ≥ 0, ∀c ∈ C, (10)

where the objective function
G =

∑
c∈C pcnc

t+1q
c
t+1 =

∑
c∈C pcγc(nc

t+1)
(1+βc)(sc

t+1)
αc

,
and Bc

t+1 = (γc(nc
t+1)

βc

)−
1

αc , denoting the maximal server
capacity requirement for channel c at time t+1, that achieves
qc
t+1 = 1.

The optimal server bandwidth provisioning for each chan-
nel, sc∗

t+1,∀c ∈ C, can be obtained with a water-filling
approach. The implication of the approach is to maximally
allocate the server capacity, at the total amount of U , to the
channels with the current largest marginal utility, as computed
with dG

dsc
t+1

, as long as the upper bound of sc
t+1 indicated in

(9) has not been reached.
In Ration, the server capacity assignment is periodically

carried out to adapt to the changing demand in each of the
channels over time. To minimize the computation overhead,
we propose an incremental water-filling approach, that adjusts
server capacity shares among the channels from their previous
values, instead of a complete re-computation from the very
beginning:

The approach starts with sc
t+1 = sc∗

t ,∀c ∈ C. It first
computes whether there exists any surplus of the overall

provisioned server capacity, that occurs when not all the server
capacity has been used with respect to the current allocation,
i.e., U − ∑

c∈C sc
t+1 > 0, or the allocated capacity of some

channel c exceeds its maximal server capacity requirement for
time t+1, i.e., sc

t+1 > Bc
t+1. If so, it adds up the surpluses and

allocates them to the channels whose maximal server capacity
requirement has not been reached, starting from the channel
with the current maximal marginal utility ( dG

dsc
t+1

). After this,
it further adjusts the server capacity assignment towards the
achievement of a same marginal utility (water-level) across
the channels, by repeatedly identifying the channel with the
current smallest marginal utility and the channel with the
current largest marginal utility, and moving bandwidth from
the former to the latter. This process repeats until all channels
have reached the same marginal utility, or have reached their
respective maximum server bandwidth requirement.

In our accompanying technical report [6], we have included
detailed steps of the incremental water-filling approach and
more discussions based on a graphical illustration. Interested
readers are referred to [6] due to space constraints.
Theorem 1. Given the channel popularity prediction
nc

t+1,∀c ∈ C, and the most recent streaming quality function
qc
t+1 = γc(sc

t+1)
αc

(nc
t+1)

βc

, ∀c ∈ C, the incremental water-
filling approach obtains an optimal server capacity provision-
ing across all the channels for time t + 1, i.e., sc∗

t+1,∀c ∈ C,
which solves the problem Provision(t+1) in (1).

Again, interested readers are referred to [6] for the proof.

E. Ration: the complete algorithm

Our complete algorithm is summarized in Table I, which
is periodically carried out on a designated server in each ISP.
The only peer participation required is to have each peer in
the ISP send periodical heartbeat messages to the server, each
of which includes its current playback buffer count.

We note that in practice, the allocation interval is decided by
the P2P streaming solution provider based on need, e.g., every
30 minutes, and peer heartbeat intervals can be shorter, e.g.,
every 5 minutes. To train ARIMA(0,2,1), generally no more
than 30 − 50 samples are required, i.e., N1 < 50, and even
less samples are needed to learn the streaming quality function.
Therefore, only a small amount of historical data needs to be
maintained at the server for the execution of Ration.

F. Practical implications

Finally, we discuss the practical application of Ration in
real-world P2P live streaming systems. In such systems with
unknown demand for server capacity in each ISP, Ration
can make full utilization of the currently provisioned server
capacity, U , and meanwhile provide excellent guidelines for
the adjustment of U , based on different relationships between
the supply and demand for server capacity.

If the P2P streaming system is operating at the over-
provisioning mode in an ISP, i.e., the total deployed server
capacity exceeds the overall demand from all channels to
achieve the required streaming rate at their peers, Ration



TABLE I
RATION: THE ONLINE SERVER CAPACITY PROVISIONING ALGORITHM

At time t, the designated server in each ISP

1. Peer statistics collection
Collect the number of active peers in each channel, nc

t , ∀c ∈
C, with peer heartbeat messages.

Collect per-peer buffer count statistics from the heartbeat
messages, and derive the streaming quality for each channel,
qc

t , ∀c ∈ C.

2. Channel popularity prediction for each channel c ∈ C
Test if nc

t is within the confidence interval of n̄c
t , the value

predicted at time t − 1.
If nc

t lies out of the confidence interval for T1 out of T2

consecutive times, retrain the ARIMA(0,2,1) model with the most
recent N1 peer number statistics.

Predict the channel popularity at time t+1 by n̄c
t+1 = 2nc

t −
nc

t−1 − θ(nc
t − n̄c

t), where θ is the parameter in ARIMA(0,2,1).
→ Channel popularity predictions for all channels are derived.

3. Learning the streaming quality function for each channel c ∈ C
Estimate the streaming quality for time t with the current

streaming quality function model: q̄c
t = γc(sc

t)
αc

(nc
t)

βc

.
Test if the actual qc

t is within the confidence interval of q̄c
t .

If qc
t lies out of the confidence interval for T1 out of T2

consecutive times, retrain the regression model in Eq. (6) with
statistics in the most recent N2 times.
→ The current streaming quality functions for all channels are
derived.

4. Proactive server capacity provisioning for all the channels
Adjust server capacity assignment among all the channels with

the incremental water-filling approach in Sec. III-D.
→ Optimal server capacity provisioning,sc∗

t+1, ∀c ∈ C,is derived.

derives the minimal amount of server capacity needed for each
channel c to achieve its best streaming quality, represented as
qc = 1. This is guaranteed by (9) in Provision(t+1)’, as the
server capacity provisioned to each channel may not exceed
the amount that achieves qc = 1. When the P2P streaming
solution provider discovers that the system is always operating
at the over-provisioning mode, they may consider to reduce
their total server capacity deployment in the ISP.

If the system is operating in a mode with tight supply-
demand relations, i.e., the total server capacity can barely
meet the demand from all channels to achieve the best stream-
ing qualities, Ration guarantees the limited server capacity
is most efficiently utilized across the channels, respecting
their demand and priority. With its water-filling approach,
the preference in capacity assignment is based on marginal
utility of each channel, dG

dsc = pcnc dqc

dsc , as determined by
the popularity and priority of the channel, and the marginal
improvement of its streaming quality upon unit increase of
server capacity. If the streaming solution provider wishes to
improve the streaming quality of the channels in the ISP, they
may further compute how much more server capacity to be
added, using the derived streaming quality function in (5).

If the system is operating with extremely tight supply-
demand relations, e.g., the flash crowd scenario, most server
capacity is assigned to the one or few channels that are
involved in the flash crowd, and most of the other channels

are starving with no or very little server bandwidth. Upon
detecting this, our algorithm can trigger the deployment of
backup server resources. Similarly, the extra amount to add
can be computed with the current streaming quality function
derived for the respective channels.

In addition, with Ration, the P2P streaming solution
provider can dynamically make decisions on channel deploy-
ment in each ISP, when it is not possible or necessary to deploy
every one of the hundreds or thousands of channels in each
ISP. When a channel is not allocated any server capacity due
to very low popularity or priority during a period of time, the
channel is not to be deployed in the ISP during this time.

IV. EXPERIMENTAL EVALUATIONS WITH TRACE REPLAY

Our evaluation of Ration is based on its implementation in
a multi-ISP mesh-based P2P streaming system, which replays
real-world streaming scenarios captured by the traces.

The P2P streaming system is implemented in C++ on a
high-performance cluster of 50 Dell 1425SC and Sun v20z
dual-CPU servers, interconnected by Gigabit Ethernet. On this
platform, we are able to emulate hundreds of concurrent peers
on each cluster server, and emulate all network parameters,
such as node/link capacities. Actual media streams are de-
livered over TCP connections among the peers, and control
messages are sent by UDP. The platform supports multiple
event-driven asynchronous timeout mechanisms with different
timeout periods, and peer joins and departures are emulated
with events scheduled at their respective times.

The P2P streaming protocol we implemented includes both
the standard pull protocol and the unique algorithms employed
by UUSee, as introduced in Sec. II. Without loss of generality,
we deploy one server for each ISP, implementing both the
tracking server and streaming server functions. Ration is
also implemented on each of the servers, with 800 lines of
C++ code. The server capacity allocation for each channel is
implemented by limiting the total number of bytes sent over
the outgoing connections from the server for the channel in
each unit time.

Our experiments are carried out on realistic replays of the
traces. We emulate peer dynamics based on the evolution of
the number of peers in each channel from the traces: when the
number of peers rises between two consecutive time intervals,
we schedule a corresponding number of peer join events
during the interval; when the number of peers decreases, peer
departure events are scheduled for a corresponding number of
randomly selected peers. Upon arrival, each peer acquires 30
initial upstream peers, and the P2P topology evolves based
on the same peer selection protocol as UUSee’s. The node
upload capacities are emulated using values from the traces,
which follow a heavy-tail distribution in the major range of
50 Kbps to 10 Mbps. The streaming rate of each channel is
400 Kbps, with the streams divided into 1-second blocks for
distribution. The size of playback buffer on the peers is set to
30 seconds. Each peer reports its buffer count to the server in
its ISP every 20 seconds, and the server processes them and
adjusts capacity allocation every 60 seconds.



A. Performance of Ration components

We first examine the effectiveness of each composing algo-
rithm in Ration. In this set of experiments, we focus on the
streaming inside one ISP, with one server of 80 Mbps upload
capacity and 5 channels. We use the peer number statistics of
5 channels from the traces, CCTV1, CCTV4, CCTV2, CCTV7,
and CCTV12, in one ISP (China Telecom) during the week
of February 13 – 19, 2007.2 The 5 channels have a regular
instantaneous number of peers at the scale of 2000, 500,
400, 150 and 100, respectively. The statistics of CCTV1 and
CCTV4 also captured the flash crowd scenario on February 17,
when the Chinese New Year celebration show was broadcast
on the two channels.

0

1

2

3

4x 10
4

N
um

be
r 

of
 p

ee
rs

 Actual number
 Predicted number
 95% confidence interval

Date
2/13 2/14 2/15 2/16 2/17 2/18 2/19

(A) CCTV1

0

500

1000

1500

N
um

be
r 

of
 p

ee
rs

 Actual number
 Predicted number
 95% confidence interval

Date
2/13 2/14 2/15 2/16 2/17 2/18 2/19

(B) CCTV12

-400

Fig. 4. Prediction of the number of peers with ARIMA(0,2,1).

1) Prediction of the number of peers: Fig. 4 presents the
results of prediction with ARIMA(0,2,1) for the popular chan-
nel CCTV1 and the unpopular channel CCTV12, respectively.
In the dynamic prediction, the training set size is N1 = 30,
and the error count parameters are T1 = 8 and T2 = 10.
The predicted numbers for both channels largely coincide with
the actually collected number of peers, both at regular times
and during the flash crowd, no matter whether the prediction
confidence interval is large or small at different times. This
validates the correctness of our model identification, as well
as the accuracy of our dynamic prediction.
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Fig. 5. Dynamic learning of the streaming quality function for CCTV1.

2) Dynamic streaming quality function: Fig. 5(A) plots the
derived parameter values for the dynamic streaming quality
function of CCTV1. In the dynamic regression, the training
set size is N2 = 20, the error count parameters are T1 = 8
and T2 = 10. We see that γc is all positive, the values of αc

are always within the range of 0−1, and βc may be positive or
negative at different times. We have observed similar results

2To expedite our experiments, each peer number time series from the traces
is sampled, such that the evolution of the P2P system in each day is emulated
within half an hour.

with the derived streaming quality functions of other channels.
This validates our analysis in the last paragraph of Sec. III-C.
During the flash crowd scenario, which hereinafter is marked
with a vertical line in the figures, βc is significantly below
zero, revealing a negative impact on the streaming quality with
a rapidly increasing number of peers in the channel.

Fig. 5(B) plots the actually measured streaming quality in
the channel against its estimated value, calculated with the
derived streaming quality function at each time. The actual
streaming quality closely follows the predicted trajectory at
most times, including the flash crowd scenario, which exhibits
the effectiveness of our dynamic regression.
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Fig. 6. Server capacity provisioning for 5 non-prioritized channels: (A)
Server capacity provisioning with Ration, (B) Streaming quality achieved
with Ration, (C) Streaming quality achieved with proportional allocation, (D)
Comparison of objective function values.

3) Optimal provisioning among all channels: We now
investigate the optimal server capacity provisioned to different
channels over time. In this experiment, we focus on examining
the effects of channel popularity on capacity allocation, and
set the priorities for all 5 channels to the same value of 1.

In Fig. 6(A), we observe that, generally speaking, the higher
the channel’s popularity is, the more server capacity it is
assigned. This can be explained by the marginal utility of
the channels used in the water-filling allocation of Ration,
dG
dsc = pcnc dqc

dsc = pcγcαc(nc)(1+βc)

(sc)1−αc . As βc > −1 is observed
in our previous experiment, the marginal utility is positively
correlated with the number of peers, and thus the more popular
channel is assigned more server capacity.

On the other hand, in Fig. 6(B), we do not observe evident
correlation between the channel popularity and its achieved
streaming quality, as the latter is decided by both the allocated
server capacity (positively) and the number of peers (positively
or negatively at different times). Nevertheless, we show that
our water-filling assignment achieves the best utilization of the
limited overall server capacity at all times, with a comparison
study to a proportional allocation approach.

The proportional allocation approach goes as follows: At



each time t, instead of using water-filling, the server capacity
is proportionally allocated to the channels, based only on their
predicted number of peers for time t+1. Fig. 6(C) shows that
the most popular channel, CCTV1, achieves better streaming
quality with this proportional allocation as compared to that
in Fig. 6(B), at the price of downgraded quality for the other
channels, especially during the flash crowd. This is because
CCTV1 now obtains more than half of the total server capacity
at regular times, and almost all during the flash crowd scenario.

With the streaming quality results in Fig. 6(B) and (C), we
compute the values of the objective function of Provision(t+1)
in (1), and plot them in Fig. 6(D). Given a same priority for
all the channels, the value of the objective function at each
time represents the total number of peers in all the channels
that achieve satisfying streaming rates at the time. The values
from the proportional allocation are consistently lower than
those achieved with our water-filling approach, exhibiting the
optimality of the server capacity utilization with Ration.
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Fig. 7. Server capacity provisioning for 5 prioritized channels with Ration.

4) Effectiveness of channel prioritization: In the next ex-
periment, we investigate the effect of channel prioritization on
server capacity provisioning with Ration, by setting 3 priority
levels: pc = 500 for CCTV1, pc = 200 for CCTV4 and
CCTV2, and pc = 50 for CCTV7 and CCTV12.

Comparing its results in Fig. 7(A) to those in Fig. 6(A),
we observe further differentiated server capacities among the
channels, where the channel with the highest priority and
popularity, CCTV1, is allocated much more capacity than the
others. In Fig. 7(B), we also observe differentiated stream-
ing qualities among channels based on their priority levels.
These demonstrate the effectiveness of channel prioritization
in Ration, which facilitates the streaming solution provider
to differentiate services across channels, when the supply-
demand relation of server capacity is tight in the system.

B. Effectiveness of ISP-aware server capacity provisioning

Next, we evaluate Ration in multi-ISP streaming scenarios.
4 ISPs are emulated by tagging servers and peers with their
ISP IDs. Again, 5 channels, CCTV1, CCTV4, CCTV2, CCTV7,
CCTV12, are deployed in the ISPs, with peer number statistics
in each ISP extracted from those in 4 China ISPs, Telecom,
Netcom, Unicom and Tietong, from the traces. While a fixed
overall server capacity is used in the previous experiments, in
the following experiments, we do not cap the server capacity,
but derive with Ration the minimal amount of overall server
capacity needed to achieve the best streaming qualities for

all the channels in the system (i.e., qc = 1,∀c ∈ C), which is
referred to as UB hereinafter. At each time during the dynamic
provisioning, UB is derived by summing up the upper bound
of server capacity required for each of the channels, as given
in (9), at the time. Our focus is to compare the total server
capacity UB required when ISP awareness is in place and not,
and the inter-ISP traffic that is caused. The channels are not
prioritized in this set of experiments.
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Fig. 8. P2P live streaming for 5 channels in 4 ISPs: without ISP awareness.

1) Without ISP awareness: In the first experiment, we de-
ploy one server in the system, and stream with a peer selection
protocol that is not ISP-aware. The overall server capacity UB

used on the server over time is shown in Fig. 8(A), and the
total inter-ISP P2P traffic in the system is plotted in Fig. 8(B).
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Fig. 9. P2P live streaming for 5 chan-
nels in 4 ISPs: with full ISP awareness.
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Fig. 10. Server capacity provision-
ing vs. inter-ISP traffic: a tradeoff.

2) With full ISP awareness: In the second experiment, we
deploy one server in each ISP, and constrain all streaming
traffic inside each ISP by fully ISP-aware peer selection, i.e.,
peers are only assigned partners inside the ISP. The server
capacity used on the server in each ISP is illustrated with
the area plot in Fig. 9. Comparing Fig. 9 to Fig. 8(A), we
can see that the overall server capacity usage in the system
does not increase much when the traffic is completed restricted
inside each ISP with per-ISP server capacity deployment. The
difference is only larger during the flash crowd, the reason for
which, we believe, is that it becomes hard for peers to identify
enough supplying peers inside the ISP when the total number
of peers soars, and thus they have to resort to the server.

3) Tradeoff between server capacity and inter-ISP traffic:
In the final experiment, we provision a total server capacity in
the system that is between the amount used in 1) and that used
in 2), and examine the resulting inter-ISP traffic. Specifically,
let the overall server capacity usage shown in Fig. 8(A) be
UBmin and that shown in Fig. 9 be UBmax. We reduce the
server capacity provisioned on each server in each ISP, such
that the overall server capacity at each time is at the value of



UBmin + φ(UBmax − UBmin) at the time. In this case, peers
are allowed to connect to servers/peers across ISPs if they fail
to acquire sufficient streaming bandwidth within the ISP.

The experiment is repeated by setting φ to 3
4 , 1

2 , 1
4 or 0,

that represent different levels of the total server capacity. The
results in Fig. 10 show an increase of inter-ISP traffic with the
decrease of server capacity provisioning. Further comparing
the φ = 0 case in Fig. 10 to Fig. 8(B), we observe that while
the total server capacity is the same UBmin in both cases, a
smaller amount of inter-ISP P2P traffic is involved with the
ISP-aware peer selection than without any ISP awareness.

V. RELATED WORK

With the successful Internet deployment of mesh-based P2P
streaming systems [7], [8], [9], significant research efforts
have been devoted to their measurement and improvement.
With respect to measurements, existing studies [8], [9], [10]
mostly focus on the behavior of peers, with little attention
devoted to the streaming servers, which nevertheless contribute
significantly to the stability of P2P live streaming.

Since the seminar work of Coolstreaming [7], various im-
provements of peer strategies in such mesh-based P2P stream-
ing have been proposed, e.g., the enhancement of the block
pulling mechanism [11], the optimization of peer connectivity
for content swarming [12], the exploration of inter-overlay
cooperation [13]. To the best of our knowledge, this paper
presents the first detailed measurements of server capacity
utilization in a live P2P streaming system, and the first
online server capacity provisioning mechanism to address the
dynamic demand in multiple concurrent channels.

With respect to analytical work touching on the subject of
server capacity, Das et al. [14] have shown with a fluid model
the effects of server upload capacities on the average peer
download time in BitTorrent-like P2P file sharing applications.
Also based on fluid theory, Kumar et al. [4] have modeled the
streaming quality in a mesh-based P2P streaming system in
terms of both server and peer upload capacities. As compared
to these analytical studies, our work focuses entirely on the
practicality of a dynamic server capacity provisioning mech-
anism. Other than using simplified modeling assumptions,
we employ time series forecasting techniques to derive the
evolution of the number of peers, and use dynamic regression
approaches to learn the relation among the streaming quality,
server capacity and the number of peers at different times.

There have recently emerged a number of discussions about
the large amount of inter-ISP traffic brought by P2P applica-
tions, with respect to BitTorrent file sharing [15], [16], P2P
Video on Demand [2], and P2P software update distribution
[17]. Approaches for the localization of P2P traffic inside
ISP boundaries have been proposed, which mostly focus on
ISP-aware peer selection. In contrast, our study is the first
to investigate the impact and evolution of inter-ISP P2P
live streaming traffic, and our proposal emphasizes on the
dynamic provisioning of server capacity on a per-ISP basis to
maximally guarantee the success of ISP-aware P2P streaming.

VI. CONCLUDING REMARKS

This paper focuses on dynamic server capacity provisioning
in multi-ISP multi-channel P2P live streaming systems. In
practice, we believe that it is important to refocus our attention
on dedicated streaming servers: based on our detailed analysis
of 7 months of traces from a large-scale P2P streaming system,
available server capacities are not able to keep up with the
increasing demand in such real-world commercial systems,
leading to a downgrade of peer streaming quality. Emphasizing
on practicality, our proposed algorithm, Ration, is able to
dynamically predict the demand in each channel, using an
array of dynamic learning techniques, and to proactively
provision optimal server capacities across different channels.
With full ISP awareness, Ration is carried out on a per-ISP
basis, and is able to guide the deployment of server capacities
and channels in each ISP to maximally constrain P2P traffic
inside ISP boundaries. Our performance evaluation of Ration
is highlighted with the replay of real-world streaming traffic
from our traces. We show that Ration lives up to our full ex-
pectations to effectively provision server capacities according
to the demand over time.
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