
1

Crystal: An Emulation Framework for
Practical Peer-to-Peer Multimedia Streaming Systems

Mea Wang, Hassan Shojania, Baochun Li
Department of Electrical and Computer Engineering

University of Toronto
{mea, hassan, bli}@eecg.toronto.edu

Abstract
To rapidly evolve new designs of peer-to-peer (P2P)

multimedia streaming systems, it is highly desirable to
test and troubleshoot them in a controlled and repeatable
experimental environment in a local cluster of servers,
as it is risky to integrate untested protocols in live pro-
duction and mission-critical peer-to-peer sessions, such
as live P2P streaming. Though it is possible to construct
such controlled experiments with virtual machine moni-
tors, there are a number of challenges and roadblocks:
(1) The deployment of such resource-hungry virtual ma-
chine environments are complicated and time-consuming
for researchers without prior systems expertise; (2) The
system designer needs to implement many basic streaming
elements, such as playback buffers and message switches.
In this paper, we seek to address these challenges by
introducing Crystal, an emulation framework for practical
P2P multimedia streaming systems, which provides support
for developing, testing, and troubleshooting new streaming
system designs in a controlled server cluster environment.
It is our imperative design objective that Crystal offers ease
of use, rapid experimental turnaround, and the capability
of emulating realistic P2P environments.

Keywords: Peer-to-peer multimedia streaming, emula-
tion framework, development toolkit.

I. Introduction
Peer-to-peer (P2P) multimedia streaming has received

extensive attention in recent research. The essence of
the P2P paradigm is a shift of algorithmic intelligence
and bandwidth burden from dedicated servers to the end
systems (i.e., peers) at the edge of the Internet. P2P
streaming systems have also been shown to offer higher
performance, better scalability, as well as superb resilience
to peer failures and departures. A large number of new
P2P streaming systems has been designed, simulated, and
implemented, from academia (e.g., [1]) and industry (e.g.,
PPLive) alike.

As P2P streaming systems are deployed in real-world

multimedia streaming applications, it has become increas-
ingly important to test, troubleshoot, and evaluate a new
P2P streaming system design under practical network
settings, before large-scale deployment. However, the com-
plexity of implementing and testing a new P2P streaming
system is non-trivial, and becomes the main obstacle that
drives most academic researchers away from assessing new
protocols in realistic networks. A testbed implemented
to evaluate a new P2P streaming system design should
involve a large number of bandwidth-limited peers behind
home broadband connections, with arrival and departure
dynamics, and actual traffic being relayed and transmitted.
Any P2P streaming system needs to establish and manage
TCP connections or UDP flows among the peers, use
dedicated tracking servers to bootstrap new participating
peers, and maintain a playback buffer that consists of
segments to be played in the immediate future. Peers
in a streaming system may also need to discover one
another, and to exchange buffer availability information.
Most existing academic studies resort to simulation studies,
which do not appropriately reflect the complexity of real-
world streaming systems.

Ideally, the best route to evaluate new protocols is to
actually implement and deploy them across the Internet,
on real peers with home broadband connections. Such an
approach, while realistic, may not offer sufficient scientific
evidence from which conclusions can be drawn. First, due
to the highly dynamic nature of peers in P2P networks,
experimental results in this setting may not be analyzed
and diagnosed design parameters are tuned. They are also
not repeatable, and as such difficult for other researchers
to independently reproduce and verify the results. Second,
without a dedicated commercial launch, it is hard to
include a large number of peers with DSL/cable Internet
connections, since home peers are more dynamic than
institutional users. Third, it may be difficult to collect vital
statistics and logistics measured at each peer, as central
logging servers are usually not scalable to a large number
of peers in the session. Finally, CPU and bandwidth — the
most important resources that lead to the advantage of the



P2P architecture — are heterogeneous and highly dynamic,
as the availability of CPU cycles and bandwidth is subject
to the fluctuating load of concurrent tasks on the same host.
Some existing evaluations of P2P protocols made use of
experimental testbeds such as PlanetLab [2] and Netbed
[3], which are examples of testing implementations that
suffer from lack of home users, lack of peer dynamics, lack
of repeatability, and lack of scalability to a large number
of peers. Development may also be complex and time-
consuming, as there does not exist a framework to support
basic elements common to P2P streaming systems.

In this paper, we present the design and implementa-
tion of Crystal, an emulation framework to support the
implementation and evaluation of practical P2P multimedia
streaming systems in a cluster of high-performance servers.
Implemented from scratch in C++, Crystal provides a
flexible framework to rapidly develop, test, tune, and
troubleshoot new designs of P2P streaming systems in a
server cluster. We design Crystal to offer ease of use, rapid
experimental turnaround, scalability with respect to the
number of emulated peers, and the capability of emulating
realistic P2P environments. It includes basic elements
common to P2P streaming systems, such as bootstrapping
protocols, efficient message forwarding mechanisms, timed
and periodic event schedulers, TCP and UDP network
socket programming, multi-threaded programming, excep-
tion handling of failures and disconnections, as well as
facilities to control, troubleshoot, and measure the perfor-
mance metrics. Crystal is to be released as an open-source
project to the P2P streaming research community.

The remainder of this paper is organized as follows. We
discuss Crystal in light of related work (Sec. II). In the
main body of the paper, we first present the architecture
and design of Crystal in Sec. III, and then demonstrate the
scalability and effectiveness of Crystal with case studies of
implementing practical P2P streaming systems in Sec. IV.
We conclude the paper in Sec. V.

II. Related Work
Before designing Crystal, we have been developing and

evaluating our P2P protocols using iOverlay [4], which was
designed to simplify protocol development and to facilitate
PlanetLab deployment. Over time, we discovered several
noteworthy challenges with iOverlay. First, due to its
internal design, iOverlay does not scale well when imple-
menting computational expensive P2P streaming protocols,
such as those involving network coding and fountain codes.
Second, the results from PlanetLab are not repeatable due
to usually overloaded PlanetLab slices. Third, iOverlay
was not able to emulate peer dynamics, which is required
to evaluate the resilience of our new protocols. Finally,
iOverlay does not provide basic elements for P2P stream-
ing. With the new design in Crystal, we have shifted
our experimental platform to server clusters, and have

completely re-implemented the new design from scratch,
with better scalability in the same cluster node, and fully
automated deployment in server clusters.

There exist previous work on using virtual machines
(such as VMWare, Xen, or User-Mode Linux). The main
objective was to support the deployment of full-fledged
applications over a virtual network (e.g., [5]), or in emu-
lation testbeds and environments to test network protocols
in a virtualized and sandboxed environment (e.g., Netbed
[3] and ModelNet [6]). In particular, ModelNet [6] has
introduced a set of ModelNet core nodes that serve as
virtualized kernel-level packet switches with emulated
bandwidth, latency and loss rates. Crystal has similar
objectives, but is designed to be simpler to deploy, more
scalable on a single physical cluster node, and much easier
to develop with. Crystal supports emulating hundreds of
peers on a single physical cluster node, and is implemented
entirely in user space beyond the abstraction of sockets. To
deploy and test a new P2P streaming system using Crystal,
a researcher does not need to configure the system with
multiple virtual machines, or to patch and recompile the
kernel. Crystal is cross-platform as well, readily deployable
on not only major UNIX variants, but also Microsoft
Windows (under Cygwin).

Mace [7], and its predecessor called MACEDON [8],
featured new domain-specific languages to describe the
behavior of an overlay protocol, from which actual code
can be generated using a code generator. As a result,
they allow protocol designers to focus their attention on
the semantics of the protocol itself, and less on tedious
implementation details. Crystal, however, is based on a
drastically different design philosophy. Mace and MACE-
DON attempt to minimize the lines of code to be developed
by the protocol developer, by using new language exten-
sions to specify the characteristics of a specific category of
P2P protocols, including DHT search and application-layer
multicast. In contrast, Crystal represents a more traditional
framework design that seeks to maximize the freedom
and flexibility of designing and implementing new P2P
streaming protocols with C++, including computationally
intensive tasks (such as network coding). As such, Crystal
reflects a different spot in the tradeoff between having the
fewest lines of code and allowing maximum flexibility.

III. Crystal: Architecture and Design
Crystal features the following highlights. First, Crys-

tal provides a set of common elements required in any
P2P streaming system, including multi-threading, message
switching, timed and periodic event scheduling, network
socket programming, and exception handling. These ele-
ments are organized into three layers: network, engine, and
algorithm. Second, Crystal is custom-tailored for server
clusters. As shown in Fig. 1, each instance of a Crystal
stack corresponds to an emulated peer. A server can easily



accommodate from one to hundreds of emulated peers,
depending on available physical resources such as CPU
and memory. Finally, any two emulated peers can establish
TCP or UDP connections. Crystal addresses the lack of
reality in simulation and the lack of controllability in real-
world deployments, and is capable to emulate any peer
upload and download capacities, end-to-end delays, as well
as peer arrivals and departures. This framework crystallizes
the past two years of our work towards implementing a
framework for P2P network emulation, in 10279 LOC
(lines of code including comments and excluding scripts).

server 1

server 2 server 3

S

incoming
connections Network

Algorithm

Engine
outgoing

connections

Fig. 1. The Crystal architecture.

A. The Core of Crystal

The design of Crystal is based on our previous work
on iOverlay [4], a lightweight middleware framework for
developing overlay applications over the Internet. The
design of iOverlay employed a “thread-per-connection”
concurrency model, using blocking socket operations and
forking a new thread for each TCP connection. For each
emulated peer, the number of threads is the same as
the number of active connections, leading to excessive
overhead of thread context switching. Though this model
may be appropriate when building overlay applications on
actual end hosts, it is not the most scalable way to build
emulated peers in a server cluster with limited CPU re-
sources. In contrast, Crystal employs two threads for each
peer, the network thread and the engine thread. With fewer
threads, the threading overhead is significantly decreased,
which makes Crystal more scalable than alternative VMM-
based solutions when emulating a large number of peers
on a single server.

The network thread, referred to as network in Fig. 1,
is responsible for handling queues of new incoming and
outgoing messages, emulating bandwidth and delay, mon-
itoring socket status, as well as detecting arrivals and
departures of peers. The engine thread, including both
engine and algorithm in Fig. 1, is mainly responsible
for processing incoming messages, performing protocol-
specific logic, emulating peer arrivals and departures, as
well as handling all periodic or timed events.

The engine and the network naturally form a consumer-
producer relationship with respect to messages. When an
upstream peer sends a message to peer p, the network
first detects the incoming traffic and receives the message
into the corresponding queue. The engine then takes the
message and passes it to the appropriate message handler,
implemented in either the engine or the algorithm. In this
case, the network is the producer, and the engine is the
consumer. To send a message from peer p, the message
is usually created by the algorithm, and is then queued
into the network via the engine. The engine does not
do any processing in this case, except looking up for
the appropriate queue in the network. The network then
sends messages to the downstream peer. Now the network
becomes the consumer, whereas the engine is the producer.

Overall, the network thread is dedicated to manage
network-level events, while the engine thread processes
and produces messages. This design leads to very fast
responses to socket events, and subsequently makes emu-
lating high-throughput peers possible.

The Network

The network thread provides low-level network I/O
services in Crystal. It handles basic sockets-level tasks
related to new incoming connections, exception handling
related to broken connections, as well as the actual com-
munication (send and receive operations) for all active
connections. The network thread supports both connection-
oriented stream sockets (TCP) and connectionless data-
gram sockets (UDP). As implied in Fig. 2, each TCP
connection from an upstream peer or to a downstream
peer is associated with a queue, implemented as a circular
buffer of messages. UDP traffic has its own dedicated
incoming and outgoing queues: we maintain one pair for
UDP data messages, and another pair for UDP control
messages. Similar to the default reactor in the Twisted
event-driven networking engine (written in Python) and in
some CORBA implementations (such as ORBacus written
in C++), all incoming and outgoing network traffic are
monitored by a single select() call with a specific
timeout value. The select() call releases when one or
more sockets from the active list become ready for I/O
operations, or when the prescribed timeout expires. The
network thread then proceeds to process these sockets.
All TCP I/O operations are non-blocking, and the send
or receive operation of a message in a queue does not
necessarily finish in one iteration of the network loop.

The Engine

Fig. 3 shows that the engine consists of four parts: (1)
the message handler for processing incoming messages; (2)
the event timer for scheduling timed or periodic events;
(3) the logger for facilitating a thread-safe logging sys-



Engine

incoming 
queues

outgoing 
queues

upstream
peers

downstream
peers

Network

UDP control

UDP data
UDP control
UDP data

Fig. 2. The design of the network thread.

tem; and (4) the API for algorithm implementation. The
engine’s main responsibility is to retrieve messages from
the incoming queues of the network, and to route them
to the appropriate message handlers. Some messages are
handled by the engine itself, and the remaining messages
are forwarded to the algorithm.

Network

Algorithm

message 
switcher

event 
timer

12

3

6

9 logger

API

Engine

Fig. 3. The design of the engine thread.

The engine provides support for timed and periodic
events by maintaining an event list. Each event in the
list is associated with a timeout value and a callback
function. The events are sorted according to their timeout
values. To add an event, the algorithm or the engine itself
simply inserts the event to the list. The engine periodically
examines the list and triggers events. When an event is due,
the engine invokes the event handler function and removes
the event from the list. In the case of a periodic event,
the event is inserted back to the list according to its next
timeout after executing the event handler function.

The Algorithm

The algorithm in the engine thread is where new P2P
streaming protocols are to be developed. To minimize
development time, the algorithm includes a collection of
basic elements for multimedia streaming, including play-
back buffers and simple protocols. The collection grows as
new protocols are designed and implemented by system
designers. The algorithm is usually implemented as an
instance of an application-specific C++ class, within the
engine thread. The application-specific class is derived
from the iAlgorithm class, which defines the Crystal
API between the engine and the algorithm. Using this
API, the engine routes messages from all upstream peers
to the algorithm for processing; and the algorithm sends
messages — via the engine and the network — to the
appropriate downstream peers.

When the incoming queues are filled with unprocessed
messages and the outgoing queues are empty, the network
thread is idle, as the engine thread is busy switching
messages at the rate of receiving them. When an algorithm
involves lengthy operations, it can block the engine thread
from processing incoming queues and timed events. For
this reason, we allow an algorithm to launch its own private
thread(s). Similar to any other multi-threaded application
with potential access to a set of shared data by multiple
threads, each algorithm thread has to use proper syn-
chronization construct to prevent potential race conditions.
Crystal provides high-level synchronization constructs in
its library, which can be easily used. While allowing
algorithm-specific threads adds to the complexity of al-
gorithm development, it gives developers the flexibility in
designing efficient and sophisticated algorithms.

B. Design Objectives Revisited
There are no limitations in the Crystal design that

preclude emulating more than one peer on each server; in
fact, such a way of running emulated peers is encouraged.
Emulated peers do not need to periodically contact a
central server for logistics or authentication. All logs are
written to local file systems, and are then collected and
analyzed by prescribed scripts after each experiment. By
minimizing the footprint of each emulated peer, we are
able to run hundreds of peers on one server. Let us now
revisit the original design objectives, and note how Crystal
fulfills these requirements.

1) Emulating bandwidth and delay: In a realistic P2P
network, peers are connected to the Internet using home
(e.g., cable/DSL) broadband connections. Crystal supports
the emulation of peer upload and download bandwidth lim-
its, peer total bandwidth limits, as well as per-connection
bandwidth limits for TCP connections. More than one limit
can be enforced concurrently on a peer. In implementing
such bandwidth limits, our objective is to minimize the
demand for CPU cycles. The engine incurs lighter CPU
load as the bandwidth limit decreases, allowing more
bandwidth-emulated peers on each server.

The basic idea is to use a timer in the network thread
to limit peer upload and download bandwidth, and an
individual timer to enforce per-connection bandwidth lim-
its. The timers are implemented through the select()
call that is already used for monitoring active sockets in
the network. The timeout value of the select() call
is tuned dynamically according to the network traffic and
available bandwidth, and is critical to the correctness and
scalability of the bandwidth/delay emulation. The basic
idea is as follows. In the example of per-connection upload
(download) bandwidth emulation, the message queue is
delayed for n/b seconds after sending (receiving) a mes-
sage, where n is the number of bytes in the message, and
b is the bandwidth limit of this connection. The descriptor



associated with this connection is not added to fd set
until n/b seconds later. In other words, we dynamically
determine the set of “ready” message queues, which are
allowed to transmit at the current time. By dynamically
changing the membership of fd set based on predefined
bandwidth limits and the current time, multiple bandwidth
limits can be enforced simultaneously with little overhead.

To implement delays on a connection in Crystal, we
add a timestamp at the time a new message is created or
received, and at the time of sending the message, we delay
the corresponding message queue for n/b+(d−d′), where
d is the link delay and d’ is the difference between the
current time and the timestamp of the message.

2) Emulating streaming servers and actual traffic:
Crystal provides a testing data source to facilitate the
emulation of real-world streaming servers in a live session.
The testing data source is able to produce data messages
from a regular file, the standard input, or a stream of
randomly generated bytes. These data messages are stored
in a dedicated message queue that is treated by the engine
in the same way as other message queues. The emulated
streaming servers send data messages via TCP or UDP
connections, according to a specified streaming rate. This
design leads to minimal changes in the implementation of
the streaming servers, i.e., they share the same architecture
as a regular peer, with a special data generator and a source
message queue. Though a testing data source is provided,
algorithm designers may still choose to implement their
own data sources.

3) Emulating peer dynamics: In a realistic P2P net-
work, peers may present a significant level of dynamics by
joining and departing at any time. To emulate peer dynam-
ics, we have implemented a log-driven facility. Upon the
startup of each experiment, each peer parses the events file
for all events that are associated with its IP address and port
number, and registers them in the event timer managed by
the engine. The use of such an event-driven facility relaxes
the necessity of contacting centralized servers, which may
lead to a considerable amount of TCP traffic that may
affect the precision of experiments.

The events file specifies the time that the event should
occur in an experiment and the type of the event. Typical
events include the birth and die times of a peer in the
network, as well as the join and leave times of a peer in
a session. There are two events that are dedicated to the
streaming server: deploy and terminate. The deploy event
specifies the streaming rate in bytes/second and the time
that the server should start to produce streaming content,
whereas the terminate event specifies the time when the
source stops producing data. We also allow optional param-
eters associated with each event. For example, to specify
the arrival of a peer in a session, the event in the log has
parameters such as the session identifier, streaming server

and streaming rate, as well as the arrival time.
Crystal provides scripts to generate events in the log

according to a probability distribution. These scripts are
able to generate the following distributions of events: (1)
The birth events following the Poisson distribution with
a PDF f(k;λ) = e−λλk

k! , where 1/λ is the inter-arrival
time. (2) The join events may follow a Weibull distribution
with PDF f(x; k, λ) = k

λ (x
λ )k−1e−(x/λ)k

, where k is
the shape parameter and λ is the scale parameter. (3)
The lifetime of a peer (the difference between join time
and leave time) may follow either a Weibull distribution
or a Log-Normal distribution with a PDF f(x;µ, σ) =

1
xσ
√

2π
e−(lnx−µ)2/2σ2

, where µ and σ are the mean and
standard deviation, respectively. Naturally, these distribu-
tions can be modified by algorithm developers at any time
by modifying the prescribed scripts.

4) Bootstrapping new peers: Upon the creation of a
peer, the peer needs to start with a set of live peers in
the network. We have implemented a centralized tracker
to provide this first-level bootstrap support by providing
newly joined peers a random subset of existing peers. The
tracker can either actively probe each peer for aliveness or
passively wait for reports from each peer, depending on
the configuration. The topology file provides an alternative
solution for bootstrapping peers. For each peer, this file
specifies a small number of peers that are alive at the birth
time of this peer. The use of this file relaxes the necessity
to contact the tracker, which may lead to a considerable
amount of TCP traffic.

5) The playback buffer: For each streaming session, a
peer maintains a playback buffer in which segments (small
units of streaming content) are ordered according to their
playback time. In Crystal, the playback buffer is internally
implemented as a circular queue. The playback buffer
registers a periodical event with the engine to emulate
segment playback. The period of this event is determined
by the size of each segment, i.e., the number of seconds
of playback represented by a segment.

6) Developing a streaming algorithm: Crystal provides
an API to the developer of a new streaming algorithm.
With the Crystal API, the algorithm developer does not
have to be concerned with thread safety, in that all
algorithm-specific code is executed in the algorithm com-
ponent of the engine thread. Such a design allows the
designers to focus on protocol-specific details, without
worrying about the internal data structure and thread safety
issues in the engine. However, it is the developer’s re-
sponsibility to handle race conditions and synchronization
issues in threads created by the algorithm outside Crystal.

A new algorithm should be developed as a derived class
of iAlgorithm, a base skeleton class implemented by
Crystal, defining the Crystal API. It includes a few member
functions that the new algorithm must implement. They



TABLE I. The API of Crystal
Member Function of
iAlgorithm

Explanations

bootstrap() This function needs to be implemented to bootstrap a new peer, and initialize its algorithm-
specific parameters.

joinSession()
leaveSession()

The engine calls these functions when a peer joins a session or leaves a session. When
a session is removed by the source, leaveSession() is also called by the engine. A
session is uniquely identified by its session identifier (a short type integer).

process() The engine calls this function when a control message is to be processed.
processData() The engine calls this function when a data message is to be processed.
peerDeparted() The engine calls this function when an existing upstream or downstream peer has departed.

The engine encapsulates all exception handling mechanisms, and these functions are called
when exceptions occur.

removePeer() The algorithm calls this function to explicitly tear down the existing TCP connection to an
upstream or downstream peer.

send() The algorithm calls this function to send a message to a peer. A message can be sent via
either TCP or UDP, specified by one of the parameters.

are listed and explained in Table I. The nature of such an
algorithm is reactive, i.e., it reacts to messages received
by the engine from its upstream peers, by implementing
process() and processData(), which is called by
the engine. The algorithm calls send() to send one or
more messages to downstream peers.

IV. Crystal: Scalability and Cases Studies
We first present benchmark measurements of Crystal in

terms of CPU usage and maximum achievable throughput
to show its scalability. We studied three performance
benchmarks: (1) Cumulative streaming rate (MB/sec), the
sum of the streaming rates achieved by all peers. (2) Per-
peer streaming rate (MB/sec), the average streaming rate
from all peers in the network. (3) CPU usage, the percent-
age of utilized CPU cycles, which signifies the scalability
of Crystal in terms of CPU load. All experiments are
carried out in a server cluster of 50 dual-CPU servers
(Pentium 4 Xeon 3.6 GHz and AMD Opteron 2.4 GHz),
interconnected by Gigabit Ethernet.

To evaluate the scalability of Crystal, we implemented
a simple P2P relaying protocol. In this protocol, a peer
simply relays incoming data messages to all neighboring
peers. A streaming server and a tracking server are hosted
on a separate machine from the remainder of the peers, so
that they do not compete for CPU cycles. the streaming
server generates data as fast as the CPU and TCP connec-
tions allow. The tracking server is configured to bootstraps
peers in a way so that the peers form multiple chains of up
to 10 peers that are stemmed from the streaming servers.

A. Scalability
We first examine the maximum achievable streaming

rate as the number of emulated peers increases on a
single cluster server. In this experiment, we enforced no
bandwidth limits or link delays so that the engine switches

messages as fast as possible, i.e., both CPUs on each
server are 100% saturated. The message payload is set
to 1 KB. As shown in Fig. 4, the cumulative streaming
rate gradually decreases as the number of peers scales
up. Despite the decrease, Crystal is able to achieve more
than 12 MB/sec in terms of the cumulative streaming
rate. Fig. 5 further shows that the per-peer streaming rate
quickly converges to 50 KB/sec, based on which we predict
that a single server can support at most 200 - 300 peers at
this rate.

0 50 100 150 200 250 300 350 400
Number of peers on one server

0

2

4

6

8

10

12

14

16

18

C
um

ul
at

iv
e 

st
re

am
in

g 
ra

te
 (M

B/
se

c)

Fig. 4. The cumulative streaming rate from all
peers on a single server.

The above observation turns our attention to the CPU
performance when tuning the per-link upload bandwidth
limit and the number of peers. In this experiment, we first
fix the number of peers to 10 and increase the per-link
upload bandwidth limit from 50 KB/sec to 1.7 MB/sec.
As the bandwidth limit increases, the engine needs to
switch more messages every second, i.e., the CPU spends
more time on message switching. As illustrated in Fig. 6,
the CPU load decreases steadily as the bandwidth limit
decreases, thus allowing more peers to be hosted on one



0 50 100 150 200 250 300 350 400
Number of peers on one server

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Av

er
ag

e 
st

re
am

in
g 

ra
te

 (M
B/

se
c)

Fig. 5. The average streaming rate per peer
on a single server, with standard deviation.

server. Without traffic, there is no load on CPU, and with-
out any bandwidth limits, Crystal achieves the same TCP
throughput as any other application. The CPU utilization
grows slowly when the bandwidth limit is less than 600
KB/sec, and then linearly increases as the bandwidth limit
grows. In real-world P2P networks, most peers have DSL-
like connections with less than 300 KB/sec upload and
download bandwidth. The results shown in Fig. 6 indicate
that Crystal can easily support a few dozens of DSL-like
peers on a single server with a light CPU footprint.

0 200 400 600 800 1000 1200 1400 1600
Per-link upload bandwidth (KB/sec)

20

40

60

80

100

CP
U 

us
ag

e 
(%

)

10 peers

Fig. 6. CPU usage as the per-link upload
bandwidth increases.
We then fix the bandwidth limit to 50 KB/sec, a typical

DSL-like peer upload bandwidth, and increase the number
of peers from 10 to 250. As shown in Fig. 7, the CPU
load decreases steadily as the number peers decreases. We
have observed a noticeable throughput drop on the peers
that were far away from the streaming server when the
network consisted of more than 200 peers. This means that
the message switch in the engine could not keep up with
the arrival rate of incoming messages, which confirms the
observation from Fig. 5 that a single server can support at
most 200 peers under this setting.

To further show the scalability of Crystal on multiple
servers, we scale the network size across 10 different
cluster servers. The average per-peer streaming rate in
Fig. 8 follows the same pattern as in Fig. 5. However, for

0 50 100 150 200 250
Number of peers on one server

0

20

40

60

80

100

CP
U 

us
ag

e 
(%

)

Per-link upload bandwidth = 50 KB/sec

Fig. 7. The CPU usage as the number of peers
increases.

the same network size, Crystal offers higher streaming rate
on 10 servers than it does on a single server. Moreover, the
streaming rate decreases at a slower rate in Fig. 8. Hence,
Crystal scales better when it is deployed on multiple
servers.

100 200 300 400 500 600 700 800 900 1000 1100
Number of peers on ten servers

0

0.2

0.4

0.6

0.8

1
Av

er
ag

e 
st

re
am

in
g 

ra
te

 (M
B/

se
c)

Fig. 8. The average streaming rate per peer
on 10 servers, with standard deviation.
The number of messages to be switched by the engine

is determined by not only the bandwidth, but also the
message size. We conduct another set of experiments to
determine the maximum achievable streaming rate as we
vary the size of messages from 1 KB to 40 KB. The
same experiment is repeated in three different networks
consisting of 10, 100, and 200 peers. Fig. 9 shows that
the cumulative streaming rate grows almost linearly as
the message size increases. Thus, to emulate a network
with higher bandwidth limits, one can either increase the
number of servers or increase the message size.

B. Case Studies

To evaluate the effectiveness of Crystal, we have first
implemented a peer-to-peer streaming protocol that uses
conventional pull-based mesh topologies. In this protocol,
referred to as Vanilla, a peer requests a missing segment
from other peers (or the source) according to their buffer
maps, exchanged among neighboring peers periodically.



0 10 20 30 40
Message size (KB)

0

50

100

150

200

250

300
C

um
ul

at
iv

e 
st

re
am

in
g 

ra
te

 (M
B/

se
c) 10 peers

100 peers
200 peers

Fig. 9. The maximum sustainable streaming
rate as the message size increases.

Most features of Crystal are used when Vanilla is
developed, allowing us to focus on its protocol design,
rather than implementation details. Our streaming protocol
reacts to messages received from peers, by implement-
ing functions for processing protocol-specific messages,
which is called by the Crystal engine. Vanilla also takes
full advantage of the Crystal support for periodic events
(e.g., to periodically exchange buffer maps and playback
buffered segments). As a result of using Crystal, we are
able to finish the implementation with only 2102 LOC
(including comments), with one researcher, and two weeks
of development time.

We have deployed Vanilla in our server cluster. With
the assistance of Crystal, we were also able to conduct a
detailed analysis of the system performance using Vanilla.
We modified each peer to log their buffer status as the
session progresses, and then collect the results using a
script. More detailed results of Vanilla can be found in
our previous work [9].

While advantages of network coding have been better
understood and tested in scenarios of P2P content distri-
bution, we are curious to know whether the same benefits
apply to P2P streaming. Existing streaming systems are not
explicitly designed to utilize network coding. We believe a
complete redesign of the streaming system is necessary to
take better advantage of network coding. In our previous
work [10], we have designed R2, a new P2P streaming
protocol that uses network coding to improve streaming
performance. Despite the computational complexity of
network coding, with the scalability of Crystal, we are
able to emulate more than 500 peers in total (around 12
peers on each cluster node), with each peer performing
network coding in real time as the experiments progress.
The success of implementing R2 using Crystal shows that
Crystal is sufficiently flexible to accommodate a wide
variety of design objectives, including a design that uses
network coding.

V. Concluding Remarks

This paper is written to present our motivation, design
and experiences with Crystal, an emulation framework for
practical P2P multimedia streaming systems. Crystal is
designed to address the challenges of rapidly prototyping,
testing, and evaluating new P2P streaming systems, in a
more realistic scenario than simulations, but a more con-
trollable and scalable environment than real-world exper-
iments. Our implementation of Crystal crystallizes about
two years of research and development, with about ten
thousand lines of code in C++, and now ready to be re-
leased in an open-source form to the research community.
It includes the engine at the core to handle networking and
message switching functions, as well as a clearly defined
API between the engine and the algorithm. Our hope is that
Crystal can help to minimize the turnaround time required
to design, implement, and evaluate new P2P streaming
protocols.

References

[1] X. Zhang, J. Liu, B. Li, and T.-S. P. Yum, “CoolStreaming/DONet:
A Data-Driven Overlay Network for Peer-to-Peer Live Media
Streaming,” in IEEE INFOCOM, March 2005.

[2] L. Peterson, T. Anderson, D. Culler, and T. Roscoe, “A Blueprint
for Introducing Disruptive Technology into the Internet,” in Proc. of
the First Workshop on Hot Topics in Networks (HotNets-I), October
2002.

[3] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. New-
bold, M. Hibler, C. Barb, and A. Joglekar, “An Integrated Exper-
imental Environment for Distributed Systems and Networks,” in
Proc. of the Fifth Symposium on Operating Systems Design and
Implementation (OSDI 2002), to appear, December 2002.

[4] B. Li, J. Guo, and M. Wang, “iOverlay: A Lightweight Middleware
Infrastructure for Overlay Application Implementations,” in Proc. of
the Fifth ACM/IFIP/USENIX International Middleware Conference
(Middleware 2004), October 2004.

[5] X. Jiang and D. Xu, “vBET: a VM-Based Emulation Testbed,”
in Proc. of ACM Workshop on Models, Methods and Tools for
Reproducible Network Research (MoMeTools 2003), August 2003.

[6] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostic, J. Chase,
and D. Becker, “Scalability and Accuracy in a Large-Scale Network
Emulator,” in Proc. of 5th Symposium on Operating Systems Design
and Implementation (OSDI 2002), December 2002.

[7] C. Killian, J. Anderson, R. Braud, R. Jhala, and A. Vahdat, “Mace:
Language support for building distributed systems,” in Proc.
the ACM SIGPLAN 2007 Conference on Programming Language
Design and Implementation (PLDI 2007), June 2007.

[8] A. Rodriguez, C. Killian, S. Bhat, D. Kostic, and A. Vah-
dat, “MACEDON: Methodology for Automatically Creating,
Evaluating, and Designing Overlay Networks,” in Proc. of the
USENIX/ACM Symposium on Networked Systems Design and Im-
plementation (NSDI 2004), March 2004.

[9] M. Wang and B. Li, “Network Coding in Live Peer-to-Peer
Streaming,” in IEEE Transactions on Multimedia, Special Issue
on Content Storage and Delivery in Peer-to-Peer Network, 2007.

[10] M. Wang and B. Li, “R2: Random Push with Random Network
Coding in Live Peer- to-Peer Streaming,” in IEEE Journal on
Selected Areas in Communications, Special Issue on Advances in
Peer-to-Peer Streaming Systems, 2007.


