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Abstract—As an increasing number of Infrastructure-as-a-
Service (IaaS) cloud providers start to provide cloud computing
services, they form a competition market to compete for users of
these services. Due to different resource capacities and service
workloads, users may observe different finishing times for their
cloud computing tasks and experience different levels of service
qualities as a result. In order to compete for cloud users, it is
critically important for each cloud service provider to select an
“optimal” price that best corresponds to their service qualities,
yet remaining attractive to cloud users. To achieve this goal, the
the underlying rationale and characteristics in this competition
market need to be better understood.

In this paper, we present an in-depth game theoretic study
of such a competition market with multiple competing IaaS
cloud providers. We characterize the nature of non-cooperative
competition in an IaaS cloud market, with a goal of capturing
how each IaaS cloud provider will select its optimal prices to
compete with the others. Our analyses lead to sufficient conditions
for the existence of a Nash equilibrium, and we characterize the
equilibrium analytically in special cases. Based on our analyses,
we propose iterative algorithms for IaaS cloud providers to
compute equilibrium prices, which converge quickly in our study.

Index Terms—Cloud computing, Infrastructure-as-a-Service,
market competition, cloud pricing

I. INTRODUCTION

Cloud computing has recently emerged as a new paradigm
for a cloud provider to host and deliver computing services
to enterprises and consumers who use such services. One of
the possible types of cloud services provided by today’s cloud
providers, such as Amazon EC2 and Rackspace, is referred to
as Infrastructure as a Service (IaaS). With IaaS, each physical
machine that a cloud provider hosts is virtualized using a
hypervisor, such as Xen Server. Such virtualization makes it
feasible for each physical machine to host multiple virtual
machines (VMs), and computing resources are leased to cloud
users in the form of these VMs. By migrating from traditional
in-house server infrastructures to cloud computing, cloud users
may trade a significant amount of up-front investment costs to
the ongoing costs of using resources provisioned on-demand
by IaaS cloud providers. In return, IaaS cloud providers are
able to charge their users for using computing resources on a
“pay-as-you-go” basis.

With multiple IaaS cloud providers available to the cloud
users, one of the ways they may differentiate themselves with
is their pay-as-you-go prices of using VMs for an hour, and
such prices reflect the quality of their services. For example,
as of March 2013, for each Virtual Machine (VM) with 4 CPU
cores, Amazon EC2 charges $0.24 for an hour of usage (called

large on-demand instance) [1], and GoGrid charges $0.32 [2],
and Rackspace charges $0.48 [3].

Since a user’s cloud service demand may be satisfied by any
of these IaaS cloud providers, a rational user will choose the
one that maximizes its own net reward, i.e., its utility obtained
by choosing the IaaS cloud service minus its payment. The
utility of a user is not only determined by the importance
of the task (i.e., how much benefit the user can receive by
finishing this task), but also closely related to the urgency of
the task (i.e., how quickly it can be finished). The same task,
such as running an online voice recognition algorithm, is able
to generate more utility for a cloud user if it can be completed
within a shorter period of time in the cloud. Since the diversity
among IaaS cloud providers will lead to different net rewards,
multiple IaaS providers form a market to compete for cloud
users.

Existing real-world measurement results [4] reveal that dif-
ferent IaaS providers complete tasks with different completion
times, and an IaaS provider can become less competitive with
an inappropriate price setting. With different price settings,
payments made to finish each benchmarking task are also
different across different providers. As a consequence, the IaaS
cloud providers are presented with a question: how can each
provider compute the optimal price to maximize its profit in
such a competition market, in which demands from cloud users
are sensitive to both the finishing time and the payment of
completing a task?

It turns out that answering this question is non-trivial. On
one hand, IaaS cloud providers may wish to increase the
price to generate more profit. On the other hand, increasing
the price too much in a competitive environment may risk
losing potential cloud users, which then results in a reduced
amount of profit. Further, although reducing the price should
intuitively be an effective way to attract cloud users, these
users may overwhelm the IaaS cloud provider due to an
unreasonably low price, which then leads to longer finishing
times on the tasks to be completed. As a consequence, the
reduced utility will prohibit future users to choose this cloud
provider.

In this paper, we take the first step to study the price
competition in a cloud market formed by multiple IaaS cloud
providers. More specifically, we present an in-depth analytical
study on the monopoly, duopoly and oligopoly markets, in
which multiple IaaS cloud providers are competing with one
another. We use an M/M/1 queue to model correlations among
the expected task finishing times, an IaaS cloud provider’s
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resource capacity, and the request rates from cloud users.
Since the pricing strategy of a cloud provider depends on its
competitors, we take a game-theoretic perspective to study the
strategic situation. To our knowledge, this is the first study that
discusses the competition among IaaS cloud providers in the
context of oligopoly market competition.

Our original contributions in this paper hinge upon the suf-
ficient conditions we have derived for the existence of a Nash
equilibrium in the market. By analyzing the Nash equilibrium,
we make the following observations. First, when multiple IaaS
cloud providers compete for users, the cloud provider with a
larger resource capacity is able to charge a higher price and
take more cloud users in equilibrium. However, its profit will
not monotonically increase with larger resource capacities, due
to increasing operating costs. As a result, though increasing
the resource capacity is an effective way for a cloud provider
to become more competitive in the market, it can only increase
its expected profit to a certain extent. If we take service-
level objectives, security measures, reputation and brand into
consideration, increasing the capacity of a datacenter may
become even less effective. Second, the equilibrium price is
found to be sensitive to the importance as well as the urgency
of tasks of cloud users: it decreases with the importance and
increases with the urgency of tasks. This motivates the use of
service-level objectives for cloud users to further specify the
importance and urgency of their tasks. Third, the equilibrium
prices are not always socially optimal. Finally, we propose
iterative algorithms to find equilibrium prices in the duopoly
and oligopoly markets, respectively, both of which are shown
to be converging rapidly to the equilibrium.

The remainder of this paper is organized as follows. We
show the originality of our work in the context of related
work in Sec. II. In Sec. III, we first formulate the competition
market and present our model, and then begin our analysis
with the monopoly problem, which serves as the baseline
for our comparisons. In Sec. IV, we analyze the competition
between two IaaS cloud providers with heterogeneous users,
and propose an iterative algorithm to find equilibrium prices.
We also study the corresponding social welfare problem. We
extend our discussion to an oligopoly market in Sec. IV-B,
and propose an algorithm to find Nash equilibrium prices for
each cloud provider. Sec. V shows some characteristics of
Nash equilibrium prices with extensive simulations. In Sec. VI,
we conclude the paper with extensive discussions on other
important factors that influence the pricing strategies in a cloud
market.

II. RELATED WORK

Considerable performance differences across cloud
providers have attracted a substantial amount of research
attention. Hong et al. [5] and Tsakalozos et al. [6] applied
dynamic programming and microeconomics, respectively,
to achieve optimal resource allocation for cloud users in
VM-based IaaS clouds, with full awareness of different prices
charged by cloud providers.

Existing papers were concerned with the problem of how
optimal pricing in the cloud can be achieved. To find the

optimal price for a caching service in the cloud, Kantere et
al. [7] modeled the correlation between user demand and the
price, and proposed a dynamic pricing scheme to maximize the
cloud provider’s profit. Teng et al. [8] and Mihailescu et al. [9]
studied optimal pricing with an auction mechanism, in which
users had budgetary and deadline constraints. Our previous
work [10] considered an exchange-based market for VMs, and
proposed a solution based on Nash bargaining games. Xu et
al. [11] used a revenue management framework to maximize
a cloud provider’s revenue with dynamic cloud pricing. Our
work in this paper differs substantially from previous papers.
First, all previous works considered the pricing of one provider
alone, but our focus in this paper is how optimal pricing can
be determined in a competitive environment with more than
one cloud provider. Second, most previous models assume that
the price is a certain function of user demand, which has not
been validated in measurement studies. In contrast, we make
the more realistic assumption that user demand at each cloud
provider remains unknown, and is subject to a game-theoretic
analysis in a duopoly or oligopoly cloud market.

Price competition has been an active research topic in the
context of economic markets with multiple service providers.
Petri et al. [12], [13] have studied the effects of risk in service-
level agreements (SLAs) in service provider communities.
Chen et al. have presented an analysis of the equilibrium price
in a monopoly market [14], and they have also discussed equi-
librium prices in a duopoly market with varying demand [15].
Allon et al. examined the scenario that multiple providers com-
peted for users using different prices and time guarantees [16].
The competition game among multiple resource providers was
also considered in networking research. Anselmi et al. studied
a congestion game with multiple links, each of which was
under the control of a profit maximizing provider [17]. In
the context of processor sharing queues, they discussed the
existence and efficiency of oligopolistic equilibria.

Similar to these existing works, we are also interested in the
existence of Nash equilibria in the cloud market with multiple
IaaS cloud providers. Yet, the context of our study is price
competition in a cloud computing environment, which has
a different system model. In our model, each cloud user is
associated with a different request rate as it is served by the
cloud, and such heterogeneity in per-user request rates makes
our analyses much more challenging.

III. MODEL FORMULATION AND MONOPOLY ANALYSIS

To begin with, we present our system model in the context
of IaaS cloud providers, and establish important results with
respect to monopoly pricing, which, while being the most
elementary in our analyses, provides us with a solid under-
standing towards our main analytical results that follow.

A. System Model

In this paper, we are concerned with a market with multiple
IaaS cloud providers, who are competing for cloud users. Each
cloud provider is modeled by an M/M/1 queue, serving a
common pool of potential cloud users with one “super” server,
which combines the resource capacity of multiple physical
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TABLE I
DEFINITIONS OF MATHEMATICAL NOTATIONS

Notation Definition
µi the service rate of the cloud provider i

γi(µi) the operating cost at the cloud provider i
pi the usage price per VM at the cloud provider i
fi the market share of the cloud provider i
v the reservation value at cloud users
M the number of cloud users
λj the request rate at cloud user j

Ui(λj) the utility of cloud user j by choosing to be served by the
IaaS provider i

r the benefit factor per VM requested
c the cost factor per time unit
πi the expected profit of cloud provider i
Λ the market size
Pij the total payment user j makes to cloud provider i
Li the combined effects of other competitive factors
ti the expected finishing time of a unit request experienced at

the cloud provider i
βi the combined attraction of provider i’s competitors

servers that the provider manages. When it comes to analyzing
the response time exhibited when processing requests as a
function of the computational capacity and the request arrival
rate, the M/M/1 queuing model has been adopted by a number
of existing papers in the literature that analyzed datacenter
operations [18]–[21]. The resource capacity of each cloud
provider i is represented by its service rate µi. γi(µi) is used
to denote the operating cost at cloud provider i, which is
assumed to be a function of its resource capacity. For users
who would like to choose the cloud service, the IaaS cloud
provider will charge a fixed per-time-unit usage price for each
type of resources consumed to finish their tasks.

All operational IaaS cloud providers support on-demand
pricing for users to use cloud computing resources. On-
demand pricing allows users to pay for the amount of resources
consumed to complete their tasks with no long-term commit-
ments. With this pricing scheme, cloud providers charge users
based on the amount of resources consumed to complete their
tasks. As a result, we use pri to denote the fixed usage price per
resource unit — for example, an unit of CPU time when using
a virtual machine — at an IaaS provider i for a type of resource
r. As we will focus on the price competition among multiple
IaaS providers for a given type of resource, the indices r will
be dropped for simplicity.

The arrival of requests from cloud users are assumed to
follow a Poisson process, an assumption that is commonly
used in competition models in the economic literature [14]–
[16]. A cloud user j makes a choice to be served by a specific
cloud provider. Yet, it also maintains a reservation value v
(assumed to be the same across all users), and if by using the
cloud service its net reward falls below v, user j can refuse
to use any cloud service, and choose to finish its task locally.

As shown in Fig. 1, a user j has a task with requests for
resources that it wishes to finish in the cloud. The rate at
which these requests are generated when running the task at a
cloud provider is denoted by λj . The market share of a cloud
provider i is denoted by fi, which equals the sum of request
rates of all users who choose cloud provider i. Each cloud user

Cloud Providers

Cloud Provider 1

Server Capacity: 
Operating Cost:

µ1
�1(µ1)

Cloud Provider i

Server Capacity: 
Operating Cost: �i(µi)

µi

Cloud User 1

Reservation Value:

Cloud Users

Utility:

�1

v
U(�1)

Cloud User 2

Utility: U(�2)

�2

...

Cloud User j

Utility:

�j

U(�j)

f1

fi

Usage Price: p1

piUsage Price:
Reservation Value: v

Reservation Value: v

...

Fig. 1. Our model of competition in an oligopoly cloud market with multiple
IaaS cloud providers.

only selects one of the IaaS cloud providers, i.e., it does not
split its requests by routing them to multiple IaaS providers
simultaneously.

Since the cloud provider i is modeled as an M/M/1 queue
with a service rate µi, based on queueing theory [22], the
expected finishing time experienced by a request from one of
the cloud users (called response time in the queueing theory
literature), including both the time waiting in the queue and
the time being served, is 1

µi−fi . This does not depend on the
scheduling discipline as long as it is work conserving, and
can be computed using Little’s Law. It then follows that the
expected time that a user request spent waiting in the queue is

1
µi−fi −

1
µi

, the second term being the expected service time.
With a request rate of λj at cloud provider i, the expected
finishing time is, therefore:

1

µi − fi
− 1

µi
+
λj
µi

=
fi

µi(µi − fi)
+
λj
µi
. (1)

We focus on stationary analysis only, in that for a given µi, the
equilibrium market share fi < µi must hold, since otherwise
the queue will grow infinitely long and the system will not
have a stationary distribution. For the problem to be worth
discussing, we assume fi < µi throughout the entire paper.

Now let us consider user j’s utility, by choosing to be served
by a cloud provider i. Since a user will be more satisfied
with more tasks completed or faster service in the cloud, its
utility should become higher as the request rate λj increases,
and as the expected task finishing time becomes shorter. More
formally, with a request rate of λj , user j’s utility is:

Ui(λj) = r · λj − c ·
[

fi
µi(µi − fi)

+
λj
µi

]
, (2)

where the benefit factor r (per unit of resource requested)
reflects the relative importance of the task, and the waiting
cost factor c (per time unit) reflects its urgency. The more
important a task is, the more utility is brought to the user. If
a task is more urgent, i.e., associated with a larger c, the time
consumed to complete the task incurs a higher waiting cost.

In Fig. 1, it can be observed that multiple cloud users
with distinct request rates and utilities are making a choice
of their respective IaaS cloud providers, based on their own
utilities and on the prices charged by each cloud provider.
Each IaaS cloud provider sets an appropriate usage price,
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according to their resource capacities and the prices from
the other providers. The objective of each cloud provider
is to maximize its own expected profit, with full awareness
of possible reactions of other cloud providers and all the
cloud users. Important notations that we introduced so far are
presented in Table I.

Remark. In some existing papers on the topic of analyzing
cloud computing performance, e.g., [23]–[25], a cloud provider
is modeled as a M/M/c queue. This model is apparently
motivated in the literature by the fact that an IaaS cloud
provider operates multiple physical servers, and each physical
server can be viewed as a server from a queueing theoretic
perspective in the M/M/c model. If we adopt this model,
the resource capacity of each cloud provider i can then be
represented by its service rate µi = niµ

′
i, where the cloud

provider i has ni servers, each of which has a service rate of
µ′i.

Based on the theory of M/M/c queues [22], the expected
finishing time experienced by a user with a request rate of
λj at cloud provider i is pq

niµ′i−fi
− 1

µ′
i

+
λj

µ′
i
, where pq is the

probability that an arriving request from a user will be forced
to join and wait in the queue (all servers are occupied), and
is given by C(ni, fi/µ

′
i), called Erlang’s C formula. Due to

the large number of physical servers in a typical IaaS cloud
provider, we believe that it is sufficient to abstract multiple
servers as a single “super” server to serve the market in
the context of cloud providers, and the additional modeling
complexity is not necessary.

B. An Analysis of Monopoly Pricing

We are now ready to present our analytical results on
monopoly pricing, which serve as preliminaries and a basis
for later comparisons. In this subsection, we consider a single
cloud provider modeled by an M/M/1 queue, with a service
rate µ and an operating cost γ(µ).

A rational cloud user j will seek to maximize its expected
net reward by finishing the task, i.e., its utility obtained by
choosing the cloud service minus its total payment. Since
cloud users are charged based on how much resource they
consume, cloud user j’s total payment Pj = pλj ,∀j. Now that
there is only one cloud provider in the market, this implies
that the cloud user will choose to use the cloud service if
U(λj)−Pj ≥ v and refuse to use it otherwise. In equilibrium,
U(λj)−Pj = v, with the corresponding market share f < µ.
In equilibrium, this implies:

rλj − c
[

f

µ(µ− f)
+
λj
µ

]
− pλj = v, ∀j, (3)

where f =
∑
j λj , representing the sum of request rates of all

users who choose this cloud provider. Considering all cloud
users together, Eqn. (3) is equivalent to

f =
Mvµ(µ− f) +Mcf

(rµ− c− pµ)(µ− f)
, (4)

if there are M cloud users.

The cloud provider’s problem is to maximize its expected
profit, denoted by π. That is,

max
p≥0

π = pf − γ(µ) (5)

s.t. f =
Mvµ(µ− f) +Mcf

(rµ− c− pµ)(µ− f)
µ > f ≥ 0.

It is worth noting that, although both the optimal price and the
market share of the cloud provider is assumed to be unknown
in this problem, the optimization variable is the price only.
The reason is that the market share of the cloud provider is
not an independent variable, and it is a function of the price
in essence. Once the price of the cloud provider is chosen,
cloud users will make their decisions of whether to choose
this cloud service or not based on their reservation values of
the tasks. This implies that as long as the price is determined,
the market share is a deterministic value.

Solving the optimization problem (5), the optimal usage
price for the cloud provider is found to be p∗ = max{pm, pΛ},
where Λ is referred to as the market size and equals the sum of
request rates of all cloud users in the market. In the monopoly
market, Λ equals to the market share f if all users choose to
use the cloud provider. When the market size Λ > µ−

√
µMc
µr−c ,

the cloud provider is not able to take the entire market in
equilibrium. The equilibrium price p∗ equals the first-order
price, which takes the form of:

pm = r− c

µ
− 1

µ

√
Mc(rµ− c)

µ
− Mv

√
rµ− c

µ
√
rµ− c−

√
Mcµ

, (6)

with the corresponding market share f∗ = µ −
√

µMc
µr−c .

Otherwise, the cloud provider will serve all cloud users, i.e.,
f∗ = Λ, and the optimal price p∗ is:

pΛ = r − c

µ
− Mc

µ(µ− Λ)
− Mv

Λ
. (7)

In summary, when there is only one cloud provider in
the market, there exists a unique optimal price p∗ =
max{pm, pΛ}. The optimal market share is bounded by the
cloud provider’s resource capacity. If its capacity is large
enough, then the cloud provider can take the entire market.
Due to the existence of the reservation value, the cloud
provider can not increase the price without bounds, even when
it is the only provider in the market.

IV. PRICE COMPETITION AMONG MULTIPLE
IAAS CLOUD PROVIDERS

A. The Duopoly Case

As a starting point, we first consider the case of a duopoly
cloud market, in which two IaaS cloud providers compete
with each other, with a similar game theoretic analysis as
the monopoly case. In this context, we derive the relationship
between the equilibrium prices for each cloud provider, and
analyze the comparative statics of Nash equilibrium prices.

We first discuss how decisions are made by cloud users in
this market. All cloud users act in a selfish fashion so as to
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maximize their own expected net reward. The optimal choice
of cloud user j is to choose the cloud provider i from which it
obtains a maximized net reward, or to refuse to use the cloud
service if its net reward failed to exceed its reservation value.
That is, a cloud user j will choose a cloud provider i (or the
option of choosing neither cloud provider) that achieves

max{Ui(λj)− Pj , v}, i = 1, 2. (8)

1) Nash Equilibrium in a Duopoly Market: Let πi be the
expected profit of cloud provider i. Each cloud provider i seeks
to maximize πi by choosing its usage price pi, which clearly
depends on the reaction of the other cloud provider and that
of all cloud users. Let πi(p1, p2) denote the expected profit of
cloud provider i if it chooses a price pi given the other cloud
provider k’s price pk, i 6= k and i, k = 1, 2. A pair of prices
(p∗1, p

∗
2) is said to be a Nash equilibrium if it satisfies:

π1(p∗1, p
∗
2) ≥ π1(p1, p

∗
2), ∀p1 ≥ 0,

π2(p∗1, p
∗
2) ≥ π2(p∗1, p2), ∀p2 ≥ 0.

In a Nash equilibrium, any cloud provider can not increase
the expected profit by changing its price unilaterally. That is
equivalent to say, the Nash equilibrium price is the optimal
price a cloud provider can achieve in a market when cloud
providers do not cooperate with each other. In the equilibrium,
the expected profits of both cloud providers are maximized,
and the market is balanced dynamically. In our subsequent
analysis, we aim to prove whether such equilibrium exists in
the duopoly market, and how can each cloud provider achieve
the equilibrium price if it exists.

The equilibrium prices can be found by a standard proce-
dure of identifying the best response function of each cloud
provider. Let pi = Fi(pk) be cloud provider i’s optimal price
given the usage price pk selected by cloud provider k. A Nash
equilibrium in this duopoly competition market is then a pair
of prices (p1, p2) such that p1 = F1(p2) and p2 = F2(p1),
i.e., an intersecting point of two best response functions.

Take cloud provider 1 as an example. The best response
function F1 can be found by assuming that cloud provider 2’s
price p2 is given and by solving cloud provider 1’s problem
as follows:

max
p1≥0

π1 =
∑
j

P1j − γ1(µ1) (9)

s.t. U1(λj)− P1j ≥ vj , ∀j (10)
U1(λj)− P1j = U2(λj)− P2j , ∀j (11)

f1 + f2 =
∑
j

λj ≤ Λ

µ1 > f1 ≥ 0,

where Pij is the total payment user j makes to cloud provider
i. Both constraints (10) and (11) come from optimizing cloud
users’ net rewards. Constraint (10) indicates that for any user
to choose cloud provider 1, it should be offered at least the
same expected net reward as its reservation value of the task.
If this constraint does not hold, the cloud user would prefer
to finish its task locally rather than using the cloud service.
Constraint (11) states that in equilibrium, the expected net
rewards that a cloud user can derive from different cloud

providers should be the same, which prohibits any cloud user
from switching cloud providers.

Similarly, the optimal price of cloud provider 2 can be found
by solving its corresponding problem, under the assumption
that the price of cloud provider 1, p1, is given.

max
p2≥0

π2 =
∑
j

P2j − γ2(µ2)

s.t. U2(λj)− P2j ≥ vj , ∀j
U1(λj)− P1j = U2(λj)− P2j , ∀j
f1 + f2 =

∑
j

λj ≤ Λ

µ2 > f2 ≥ 0,

Each cloud provider will update its prices with respect to
the reaction of its competitor and all cloud users, until an
equilibrium point is reached, i.e., when neither cloud provider
can gain a higher expected profit by changing its own price
unilaterally.

When cloud users are charged based on their usage of
resources, the problem of finding cloud provider 1’s best
response function (9) is equivalent to:

max
p1≥0

π1 = p1f1 − γ1(µ1)

s.t. f1 ≥
Mvµ1δ1 +Mcf1

(rµ1 − p1µ1 − c)δ1

f1 + f2 =
cf1µ2δ2 − cf2µ1δ1

[c(µ1 − µ2)− µ1µ2(p1 − p2)]δ1δ2
f1 + f2 ≤ Λ

µ1 > f1 ≥ 0,

where δi = µi − fi.
By considering the best response problems of both cloud

providers together, we derive the necessary condition for
the existence of a Nash equilibrium. Any equilibrium must
satisfy the following constraints, referred to as the first-order
necessary condition for the existence of a Nash equilibrium,
as summarized in Lemma 1.

Lemma 1: The necessary condition for a set of solution
(p1, p2, f1, f2) to be a Nash equilibrium is that, it should
satisfy the following constraints:

fi ≥
Zi

Yiµiδi
(12)

f1 + f2 =
cQ

Xδ1δ2
(13)

f1 + f2 = Λ (14)

f1 ≥
Qδ2(p1Z1δ1 + Y 2

1 f1δ
2
1 −Mcµ1f1Y1)

QY1δ1δ2(Y1δ1 −Mcµ1) +XZ1(δ2
1 + δ2

2)
(15)

f2 ≥
Qδ1(p2Z2δ2 + Y 2

2 f2δ
2
2 −Mcµ2f2Y2)

QY2δ1δ2(Y2δ2 −Mcµ2) +XZ2(δ2
1 + δ2

2)
(16)

X(Xδ2
2 + cµ1µ2)(pr1Z1δ1 + Y 2

1 f1δ
2
1 −Mcµ1f1Y1)

QY1δ1δ2(Y1δ1 −Mcµ1) +XZ1(δ2
1 + δ2

2)
≥ 0

(17)
X(cµ1µ2 −Xδ2

1)(pr2Z2δ2 + Y 2
2 f2δ

2
2 −Mcµ2f2Y2)

QY2δ1δ2(Y2δ2 −Mcµ2) +XZ2(δ2
1 + δ2

2)
≥ 0,

(18)
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where X = c(µ1−µ2)−µ1µ2(p1− p2), Yi = rµi− piµi− c,
Zi = Mvµ2

i (µi − fi) + Mvµifi, and Q = f1µ2(µ2 − f2) −
f2µ1(µ1 − f1).

Proof: Eqn. (12) and (13) in Lemma 1 are obtained
from the constraints (10) and (11) directly by substituting the
corresponding utility and payment functions. Constraint (12) is
proved to hold with equality in equilibrium [15], which gives
Eqn. (14) in Lemma 1.

Considering the Lagrangian function of cloud provider
1’s problem, the requirement that the Lagrangian multipliers
corresponding to inequality constraints should be greater or
equal to 0 gives Eqn. (15) and (17) in Lemma 1. Similarly,
by considering the Lagrangian function of the cloud provider
2’s problem, we have Eqn. (16) and (18). As a result, all
equations in Lemma 1 are necessary for the existence of a
Nash equilibrium.

Having results from Lemma 1, we now come to the suf-
ficient condition for the Nash equilibrium, which is stated in
Theorem 1. Due to the complexity of this problem, we are
not able to obtain the exact analytical presentation of the price
and the market share of each cloud provider in equilibrium.
However, we have obtained an important relation between
equilibrium prices, which shows the pricing gap between two
cloud providers.

Theorem 1: Let (p∗1, p
∗
2, f
∗
1 , f

∗
2 ) be a feasible solution that

satisfies all equations in Lemma 1. Then (p∗1, p
∗
2) is a Nash

equilibrium if it satisfies:

p∗1 − p∗2 =
c(µ1 − µ2)

µ1µ2
− cf∗1

Λµ1(µ1 − f∗1 )
+

cf∗2
Λµ2(µ2 − f∗2 )

and
h′(f̂i) ≤ 0,

where

h(fi) =

[
pk +

c(µi − µk)

µiµk
− cfi

Λµi(µi − fi)

+
c(Λ− fi)

Λµk(µk − Λ + fi)

]
fi − γi(µi),

i 6= k and i, k = 1, 2. f̂i is obtained by solving

h′′(fi) = 0.

Proof: We take the cloud provider 1’s problem as an
example to show a proof sketch. In view of Lemma 1, cloud
provider 1’s problem is equivalent to

max
0≤f1≤Λ

h(f1) =

[
p2 +

c(µ1 − µ2)

µ1µ2
− cf1

µ1Λ(µ1 − f1)

+
c(Λ− f1)

µ2Λ(µ2 − Λ + f1)

]
f1 − γ1(µ1)

s.t.
Mv

f1
+

McΛ− cf1

µ1Λ(µ1 − f1)

+
c(Λ− f1)

µ2Λ(µ2 − Λ + f1)
≥ r − p2 −

c

µ2
,

with additional constraints on f1 such that f1 < µ1 and f2 =
Λ− f1 < µ2. By differentiation, we show that function h′ is

concave. Let f̂1 be the maximal point of h′ in (Λ − µ2, µ1),
f̂1 is the root of

h′′(f1) = 0. (19)

To guarantee Inequality (12) to be binding in the case of two
cloud providers, we have to further require h′(f̂1) ≤ 0, which
completes the proof.

Corollary 1: When µ2 > µ1, p∗2 > p∗1 in equilibrium.
Since cloud users are sensitive to finishing times of their

tasks, a cloud provider with a larger resource capacity is more
likely to complete a task within a shorter period of time. As
a consequence, it is preferred by more cloud users. Because
a larger resource capacity helps a cloud provider to enjoy an
advantageous position in the competition market, the cloud
provider can charge a higher price as a result.

Proof: Given µ2 > µ1 and µ1 > f∗1

p∗2 − p∗1 =
c(µ2 − µ1)

µ1µ2
+

cf∗1
Λµ1(µ1 − f∗1 )

− cf∗2
Λµ2(µ2 − f∗2 )

>
f∗1µ

2
2 − µ2f

∗
2 f
∗
1 − f∗2µ2

1 + µ1f
∗
2 f
∗
1

µ1µ2(µ1 − f∗1 )(µ2 − f∗2 )

>
f∗1µ2(µ2 − f∗2 )

µ1µ2(µ1 − f∗1 )(µ2 − f∗2 )
> 0.

Based on the results in Theorem 1, we present a simple
iterative algorithm that can be used to compute the price for
each cloud provider in a duopoly market, described in Algo-
rithm 1. Though we are unable to prove that the converged
price is guaranteed to be the Nash equilibrium, our simulation
results shown in Sec. V have shown that this is the case in
our simulation scenarios.

Algorithm 1 Compute the price for cloud provider i in a
duopoly market.

1: (Initialization). Each cloud provider i sets the usage price
to be pi = r − v − c.

2: (Iterative step). Each cloud provider i then updates its
price using another cloud provider i’s price and the current
market shares fi and f ′i :
pi = p′i +

c(µi−µ′i)
µiµ′i

− cfi
Λµi(µi−fi) +

cf ′i
Λµ′

i
(µ′

i
−f ′

i
)

3: (Convergence criterion). Repeat the iterative step until the
price pi differs from its previous value by less than a
predetermined value ε.

We use an example to illustrate how prices converge itera-
tively. Since the operating cost of each cloud provider does not
affect their selections of prices, we set both γ1(µ1) and γ2(µ2)
to 0 in this example. Suppose the reservation value v = 1, the
benefit factor r = 5, and the waiting cost factor c = 1. When
there are 20 cloud users in the market, the convergence of
usage prices per resource unit as well as the market shares
of two cloud providers with resource capacities µ1 = 2 and
µ2 = 4 are shown in Fig. 2 and Fig. 3, respectively. We set
ε = 0.001 as the convergence criterion in this example.

As we can see, the proposed algorithm converges rapidly
— within 4 iterations. As we have shown in Corollary 1, the
cloud provider with a larger resource capacity charges a higher
price. In this case, p∗2 > p∗1. We can also observe from the
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Fig. 3. The convergence of market
shares.

figure that the cloud provider with a larger resource capacity
also attracts more cloud users in equilibrium. This reveals that
cloud providers can become more competitive in the market by
increasing its resource capacity. Since cloud users are sensitive
to finishing times of their tasks, even a cloud provider with
a higher resource capacity will charge a higher price, most
cloud users still prefer to choose this faster provider.

2) Nash Equilibrium in a Duopoly Market with Homoge-
neous Cloud Providers: In the homogeneous case that two
cloud providers have the same resource capacity, the next
theorem establishes the result that a unique Nash equilibrium
exists in the duopoly market, and that the iterative algorithm
above always converges to the same price for both cloud
providers. It can be derived by solving the optimization
problem in Theorem 1.

Theorem 2: When reduced to homogeneous cloud
providers, i.e., µ1 = µ2 = µ, the Nash equilibrium (p∗1, p

∗
2) in

Theorem 1 takes the form of:

p∗1 = p∗2 = r − c

µ
− 2Mc

µ(2µ− Λ)
− 2Mv

Λ

with the corresponding market shares f∗1 = f∗2 = Λ/2.
Proof: When the two cloud providers are equivalent to

each other in service rate, i.e., µ1 = µ2 = µ, the two cloud
providers are indifferent to the cloud users, which implies
that the equilibrium solution is symmetric [26]. According to
Theorem 1, we have

p∗1 − p∗2 =
c(f∗2 − f∗1 )

Λ(µ− f∗1 )(µ− f∗2 )
. (20)

Based on constraint (11), we know that the following relation-
ship must hold between the optimal prices and market shares.

f∗1 + f∗2 =
c(f∗1 − f∗2 )

(p∗1 − p∗2)(µ− f∗1 )µ− f∗2
. (21)

Substitute Eqn. (20) into Eqn. (21), we can obtain that

f∗1 + f∗2 = Λ.

Based on the symmetric characteristic of the equilibrium
solution, we now have that

f∗1 = f∗2 = Λ/2.

Now let’s take cloud provider 1’s expected profit maximiza-
tion problem as an example. Constraint (10) requires that

(rµ− p1µ− c)(µ− f1)f1 ≥Mvµ(µ− f1) +Mcf1.

When f1 = Λ/2, this implies that

p1 ≤ r −
c

µ
− 2Mc

µ(2µ− Λ)
− 2Mv

Λ
.

Since the optimal price is the one that maximizes the expected
profit of each cloud provider, which equals pifi. We get he
result that the Nash equilibrium price p∗1 = r− c

µ−
2Mc

µ(2µ−Λ)−
2Mv

Λ . Similarly, we can obtain that the Nash equilibrium price
p∗2 = r − c

µ −
2Mc

µ(2µ−Λ) −
2Mv

Λ as well, which completes the
proof.

We can see from Theorem 2 that, when cloud providers
are homogeneous, i.e., they have the same resource capacities,
both cloud providers will charge the same price, which has the
form of the monopoly price pΛ, with each of them taking
half of the market. That is, both cloud providers behave
independently and operate exactly the same as monopolists.

Corollary 2: The comparative statics of the homogeneous
Nash equilibrium price in Theorem 2 are as follows:

∂p∗

∂r
= 1 > 0,

∂p∗

∂c
= −1

2

√
1

µc
< 0

∂p∗

∂v
= −M

Λ
< 0,

∂p∗

∂µ
=

1

2µ

√
c

µ
+
Mc(2µ− Λ)

µ2(µ− Λ)2
> 0

∂p∗

∂Λ
=

2M

µΛ2(2µ− Λ)2

[
(µv − c)Λ2 − 4vµ2Λ + 4vµ3

]

 > 0 0 < Λ <

2vµ2−2µ
√
µvc

µv−c

< 0
2vµ2−2µ

√
µvc

µv−c < Λ < µ
µ > c

v

> 0 0 < Λ < µ µ ≤ c
v

The comparative statics of the equilibrium price are illus-
trated in Fig. 4. As we can see, they conform with most of
our intuitions. A cloud provider will raise the usage price
with an increase in the users’ benefit factor r and its resource
capacity µ, and reduce the price in response to an increase in
the waiting cost factor c and the reservation value v.
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Fig. 4. An illustration of the statics of the homogeneous Nash equilibrium
price.

Since the benefit factor r reflects the importance of the task
and the waiting cost factor c represents its urgency, this implies
that the more important the task is, the more the cloud provider
will charge the user; the more urgent users view the task, the
less the cloud provider “dares” to charge in order to win the
“deal” from users. The rationale is that if the cloud provider
knows that the task is important to the user, i.e., the user
will gain substantial benefit by completing the task, the cloud
provider will infer that the user is willing to pay more to finish
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the task, and hence ask for more. Yet if the task is urgent, the
cloud provider will tend to ask less to make up for its limited
resource capacity.

In addition, if the cloud provider is able to increase its
resource capacity µ by investing in new servers or by upgrad-
ing its current facilities, it will be able to ask more for the
improved service quality. In the figure, we can see that when
the resource capacity is small, the demand will be relatively
strong compared to the resource capacity, which results in
a non-competitive environment in the market. Increasing the
resource capacity slightly results in a rapid increase of usage
price. Finally, in cases when users have a higher reservation
value v and thus may refuse to use the cloud service with a
higher probability, cloud providers will have to reduce their
prices to attract users.

The market size Λ will affect the usage price in a more
complicated way. When the resource capacity is large enough,
i.e., µ > c

v , the cloud provider will raise the price when the
market size increases, until it reaches a certain threshold, e.g.,
Λ = 4.6 in the figure. If the market size continues to increase,
users will overwhelm the cloud providers and may experience
longer task finishing times. Cloud providers will reduce the
price to compensate for the increased waiting costs. However,
if the resource capacity is small, i.e., µ < c

v , the market is
again in a non-competitive environment, which results in the
fact that price increases with a larger market size.

3) Social Welfare Problem in the Duopoly Market: We
have previously analyzed the Nash equilibrium prices in a
competition market with two cloud providers. In equilibrium,
each cloud provider’s price is determined by its best response
function to the other cloud provider’s price. In other words,
prices are optimized for cloud providers only, with no direct
implication that all cloud providers and users will reach an
outcome that is socially optimal. A choice of prices — one
by each cloud provider — is socially optimal if it maximizes
the sum of payoffs to all participants [27]. In the cloud market,
it implies a set of equilibrium prices at which the payoffs of
both cloud providers and cloud users are maximized. A cloud
user j’s payoff for being served by cloud provider i is its
expected net rewards U(λj) − Pij , with a request rate of λj
and a usage price pi, i = 1, 2; a cloud provider i’s payoff in
this market equals its expected profit, which is πi. Therefore,
the social welfare is:∑

i,j

[U(λj)− Pij ] +
∑
i

πi.

In the social welfare problem, prices are simply an internal
transfer of wealth and hence are not considered as objective
variables. Our interest is how cloud users are distributed
between two cloud providers to maximize social welfare.
Though we hope that the duopoly equilibrium prices are also
socially optimal, our analysis shows it is not always the case.

Theorem 3: The social welfare maximizing solution
(f∗1s, f

∗
2s) is not always the same as the market shares (f∗1 , f

∗
2 )

in equilibrium.
Proof: The social welfare maximization problem in a

duopoly cloud market takes the form of:

max
f1<µ1,f2<µ2

(r − c

µ1
)f1 −

cMf1

µ1(µ1 − f1)
+ (r − c

µ2
)f2

− cMf2

µ2(µ2 − f2)
− 2Mv − γ1(µ1)− γ2(µ2)

s.t. f1 + f2 ≤ Λ

The first-order condition for the social welfare problem is

r − c

µi
− cM

(µi − fi)2
− η = 0 , i = 1, 2,

η(Λ− f1 − f2) = 0,

where η is the Lagrangian multiplier. When f1 + f2 < Λ, we
get the social optimal solution equals:

f∗is = µi −

√
cMµi
rµi − c

, i = 1, 2.

Otherwise when f1 + f2 = Λ, the social optimal solution is
given by

f∗is = µi −

√
cMµi

rµi − c− ηµi
, i = 1, 2,

where η is the unique solution to

µ1 −

√
cMµ1

rµ1 − c− ηµ1
+ µ2 −

√
cMµ2

rµ2 − c− ηµ2
= Λ (22)

in the interval (0,min{r− c
µ1
, r− c

µ2
}). The reason that η is

uniquely determined by Eqn. (22) in a certain interval is that
the left-hand-side of Eqn. (22) is monotonically decreasing in
η. The value of the left-hand-side expression is greater than
Λ when η = 0, and is approaching −∞ as η increases to
min{r − c

µ1
, r − c

µ2
}.

It is not difficult to verify that the market shares in equi-
librium are socially optimal in a homogeneous duopoly cloud
market, i.e., when two cloud providers have the same service
rate µ1 = µ2 = µ. Since we have shown that f1 + f2 = Λ
in this case in Theorem 2, the social optimal market share of
both cloud providers takes the form

f∗1s = f∗2s = µ−

√
cMµ

rµ− c− ηµ
,

where η can be obtained from the equation

2µ− 2

√
cMµ

rµ− c− ηµ
= Λ.

Combine these two equations together, we can get the result
that the social optimal market share in a homogeneous duopoly
cloud market is f∗1s = f∗2s = Λ/2. We can see that the social
optimal market share equals to the equilibrium market share
f∗1 = f∗2 = Λ/2 that we have proved in Theorem 2, which
leads to a Price of Anarchy (PoA) of 0 in this case. However,
we can also see that in a more general case when f1 +f2 < Λ,
the Nash equilibrium is not typically socially optimal.

Though the conclusion that the social welfare maximizing
solution is not the same as the market shares in equilibrium



9

is not a surprise, it is not intuitive either. More importantly,
a Price of Anarchy of 0 can be achieved in a homogeneous
duopoly, which means that the social welfare maximizer also
reflects the equilibrium market share.

B. The General Case

Based on our game theoretical analysis of price competition
in the monopoly and duopoly cloud markets, we now proceed
to consider the general case when multiple cloud providers are
competing with one another. Our analyses will show that a
unique Nash equilibrium exists in an oligopoly cloud market.
We will also present an iterative algorithm to compute the
equilibrium prices based on our analyses.

1) Cloud Provider i’s Problem in an Oligopoly Market:
From our previous analysis in the duopoly market, we can
see that the market share of each cloud provider is not only
affected by the cloud provider’s own price, but also the other
cloud provider’s pricing choice, which are both variables to
be determined. In a market with multiple cloud providers, the
usage prices will influence each cloud provider’s market share
in a highly complicated way, and due to this reason we are not
able to get the exact analytical presentation. As an alternative,
We apply the Multiplicative Competitive Interaction (MCI)
model to capture the relationship between usage prices and
market shares in an oligopoly market. Proposed by Bell et
al. in 1975 [28], the MCI model is widely used in economic
competition markets [16], [26].

To be specific, the market share of each cloud provider
in a market with N cloud providers is assumed to take the
following form:

fi = Λ

(
Lip
−a
i t−bi∑N

j=1 Ljp
−a
j t−bi

)
, ∀i = 1, 2, ..., N,

where ti represents the expected finishing time of a unit
request experienced at cloud provider i, including both the
waiting time in the queue and the service time. The numerator
Lip
−a
i t−bi , with a, b ≥ 0, represents the attraction of cloud

provider i, which corresponds to how cloud users feel towards
its service given its usage price, expected finishing time,
and other competitive factors, e.g., API, load balancing, and
reputation. The parameter a and b are referred to as the
price attraction factor and the finishing time attraction factor,
respectively. The parameter Li > 0 represents the combined
effects of other competitive factors, with a larger Li reflecting
a higher degree of attraction to cloud users. Cloud provider
i’s market share is given by its relative attraction to all cloud
providers in the market. In subsequent analyses, we choose
a = b = 1 for simplicity.

Based on queueing theory, the expected finishing time t of a
single request, including both the waiting time and the service
time, equals 1

µ−f in an M/M/1 queue. Note that in a cloud
environment, for a given resource capacity µi at cloud provider
i, the expected finishing time is a function of its market share
fi, which is determined by the cloud provider’s usage price. As
a consequence, if we use βi = 1

Li

∑
j 6=i Ljp

−1
j t−1

j to denote
the combined attraction of cloud provider i’s competitors, the

market share of cloud provider i is

fi =
Λ

βipiti + 1
, ∀i = 1, 2, ..., N.

Substituting ti = 1
µi−fi , together with the requirement that

fi < µi, we have

ti =
2

µi − βipi − Λ +
√

(µi + βipi + Λ)2 − 4Λµi
. (23)

Expressed as a function of usage prices, the market share of
cloud provider i, fi, is in a much more complicated form than
that in typical economic papers in the literature discussing
price competition, and this makes our subsequent analyses
substantially more challenging.

Again, the objective of cloud provider i is to find the best
response function that maximize its expected profit, taking into
consideration the usage prices set by other cloud providers.
Mathematically, the problem faced by cloud provider i can be
formulated as the following:

max
pi≥0

πi = Λ

(
pi

βipiti + 1

)
− γi(µi) (24)

s.t.
Λ(µir − c− µipi)
µi(βipiti + 1)

− cMΛ

µi(µiβipiti + µi − Λ)
≥Mv

µi >
Λ

βipiti + 1
≥ 0

ti =
2

µi − βipi − Λ +
√

(µi + βipi + Λ)2 − 4Λµi
.

Constraints in problem (24) ensure that any cloud user who
chooses cloud provider i will be offered at least the same
expected net reward as its reservation value.

2) Nash Equilibrium in an Oligopoly Market: In an
oligopoly market with N cloud providers, the N-tuple price
vector (p∗1, p

∗
2, ..., p

∗
N ) is called a Nash equilibrium if for each

cloud provider i, p∗i is the best response to price p∗j chosen
by all other firms j 6= i. In other words, the Nash equi-
librium implies that no single cloud provider can benefit by
deviating from this equilibrium point unilaterally. By solving
problem (24), cloud provider i is able to compute its optimal
price pi based on the combined attraction of its competitors
βi, which in turn can be computed using the current prices
pj of other cloud providers j 6= i. With the idea of solving
this problem in an iterative fashion, we have designed the
following iterative algorithm, Algorithm 2, to compute the
Nash equilibrium price for each cloud provider.

In subsequent analyses, we are going to show that a unique
Nash equilibrium exists in a price competition market with
multiple cloud providers, and the above iterative algorithm
always converges to this equilibrium solution. This is fairly
significant, in that if the required information in Algorithm 2
is available, we now have an algorithmic tool to compute the
unique Nash equilibrium. We first present a necessary result
that is useful to derive the key results in Lemma 3.

Lemma 2: When µi > Λ, Mvµ2
i + cMΛ > Λ2(µir − c)

and Mvµi(µi − Λ) + cMΛ < Λ(µir − c)(µi − Λ).
Proof: We use the first inequality to show a proof sketch

here. The second inequality can be proved by using the same
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Algorithm 2 Compute the Nash equilibrium price for cloud
provider i in an oligopoly market.

1: (Initialization). Each cloud provider i sets the usage price
to be a very small value pi = ε′.

2: (Iterative step).
3: for cloud provider 1 to N do
4: Each cloud provider i computes the optimal price pi

by solving problem (24) using the current values pj of
other cloud providers j 6= i, and updates the price pi.

5: end for
6: (Convergence criterion). Repeat the iterative step until

price pi differs from its previous value by less than some
predetermined value ε.

technique. The first inequality in Lemma 2 is equivalent to

Mvµ2
i − Λ2rµi + Λ2c− cMΛ > 0. (25)

It is obvious that Mv > 0, −Λ2r < 0. Since Λ ≥ M ,
Λ2c − cMΛ ≥ 0. If Λ4r2 − 4Mv(Λ2c − cMΛ) ≤ 0, then
inequality (25) holds for all µi. On the other hand, if Λ4r2 −
4Mv(Λ2c− cMΛ) > 0, we find that Λ > µi, where µi is the
larger root given by the quadratic function in inequality (25).
To summarize, inequality (25) holds when µi > Λ, which
completes the proof.

Based on Lemma 2, the following Lemma establishes two
key results for analyzing the price competition in an oligopoly
cloud market. To be specific, Lemma 3 characterizes the
optimal price for each cloud provider when prices of all
other providers are given. It also reveals the fact that a cloud
provider will have to compete with a lower price when the
combined attraction of its competitors increases. Furthermore,
Lemma 3 also serves as an important supporting lemma in the
proof of Theorem 4.

Lemma 3: (i) A unique optimal price p∗i exists for cloud
provider i, and is bounded by 0 < p∗i ≤ pi. (ii) The optimal
price p∗i is decreasing in βi.

Proof: According to Eqn. (23), the expected finishing
time ti is a function of the usage price pi at each cloud
provider i. Let H(pi) = piti. H(pi) takes the form of

H(pi) =
2pi

µi − βipi − Λ +
√

(µi + βipi + Λ)2 − 4Λµi
.

Note that βi is determined by the price and combined effects
of all other cloud provides except i. Once the prices of other
cloud providers are fixed, βi is a constant from cloud provider
i’s point of view. Since

∂H(pi)

∂pi
=

2(αi +
√
α
′2
i − 4Λµi) + 2pi

βiα
′
i−βi

√
α
′2
i
−4Λµi√

α
′2
i
−4Λµi

αi +
√
α
′2
i − 4Λµi

,

where αi = µi − βipi − Λ, α′i = µi + βipi + Λ, we know
that ∂H(pi)

∂pi
> 0, which implies that H(pi) is increasing with

pi. Fig. 5 shows how H(pi) changes with price pi. As we
can see in the figure, if we can prove that a uniquely existed
H∗(pi) that maximizes cloud provider i’s expected profit in
problem (24) is bounded by [0, H(pi)], and is decreasing in

βi, we are able to prove that a uniquely existed optimal price
p∗i for cloud provider i is bounded by 0 < p∗i ≤ pi, and is
decreasing in βi.

0 pi

H(pi)

H(pi)

p̄ip⇤i

H⇤(pi)

Fig. 5. The graph of the function H(pi).

(i) Based on the fact that the equilibrium market share fi <
µi, we have

H(pi) ≥
Λ− µi
βiµi

.

Since H(pi) = piti should also be greater than 0 to ensure a
non-negative expected profit obtained by cloud provider i, the
inequality

Λ− µi
βiµi

< 0⇒ Λ < µi (26)

must hold to avoid an infinite queueing delay.
The constraints in problem (24) can be rephrased as

AiH(pi)
2 +BiH(pi) + Ci ≤ 0, (27)

where Ai = Mvµ2
iβ

2
i + µ2

iΛβi, Bi = Mvµiβi(µi − Λ) +
µ2
iβiMv − µiβiΛ(µir − c) + µiΛ(µi − Λ) + cMΛβi, and
Ci = Mvµi(µi − Λ) + cMΛ − Λ(µir − c)(µi − Λ). It is
obvious that Ai > 0. For a meaningful problem that is worth
discussing, each cloud provider should be able to attract at
least one cloud user when it charges a usage price 0 and there
is no other cloud users waiting in the queue, which is to say(

r − c

µi

)
Λ > Mv ⇒ (rµi − c)Λ > Mvµi. (28)

Based on Eqn. (28) and the result in Lemma 2, we have Ci < 0
and Bi ≥ µiΛ(µi − Λ), ∀i.

This shows that the quadratic function in (27) has two real-
value roots H(pi) and H(pi), with H(pi) < 0 and H(pi) > 0.
This establishes the result that H∗(pi) is bounded by 0 <
H∗(pi) ≤ H(pi), which implies that the equilibrium price p∗i
for cloud provider i is bounded.

(ii) According to Eqn. (27), we have

(2Mvµ2
iβi + µ2

iΛ)H(pi)
2 + (Mvµ2

iβ
2
i + µ2

iβiΛ)2H(pi)

×∂H(pi)

∂βi
+

1

βi
[Bi − µiΛ(µi − Λ)]H(pi) +Bi

∂pi
∂βi
≤ 0,

which implies that

∂H(pi)

∂βi
≤
−H(pi)

2 − H(pi)
βi

Bi−µiΛ(µi−Λ)
2Mvµ2

i
βi+µ2

i
Λ

2H(pi)
Mvµ2

i
β2
i
+µ2

i
βiΛ

2Mvµ2
i
βi+µ2

i
Λ

+Bi
≤ 0.

This shows that function H(pi) is decreasing in βi. Based on
the fact that

∂pi
∂H(pi)

=
2(µi − Λ)

H(pi)3[
√

2
H(pi)2

− β2
i ]

3
2

≥ 0,
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we have ∂pi
∂βi

= ∂pi
∂H(pi)

∂H(pi)
∂βi

≤ 0, which establishes the
second statement that the optimal price p∗i is decreasing in βi.
We further observe that

∂πi
∂pi

=
Λ− Λp2

i ti
∂βi

∂pi
− Λ2p2

iβi
∂ti
∂pi

(βipiti + 1)2
.

Based on the fact that ∂βi

∂pi
< 0 and ∂ti

∂pi
< 0, we have ∂πi

∂pi
>

0, which completes the statement that the optimal price p∗i
uniquely exists.

Theorem 4: Algorithm 2 always converges to the unique
Nash equilibrium solution in an oligopoly cloud market.

Proof: We are now ready to show that Algorithm 2 always
converges to the Nash equilibrium. Let p(k)

i be the optimal
price at the kth iteration. We shall prove by induction that p(k)

i

is increasing in k. Since p∗i is bounded by pi, this establishes
the result that p(k)

i always converges.
By definition, p(0)

i = ε′, where ε′ can be chosen to be small
enough such that p(k)

i > ε′. In particular, when k = 1, p(1)
i >

p
(0)
i . Now assume that p(k)

i ≥ p
(k−1)
i for all i and k < n. At

the beginning of the nth iteration, we have

β
(n)
1 =

1

L1

∑
j>1

Lj(p
(n−1)
j )−1

≤ 1

L1

∑
j>1

Lj(p
(n−2)
j )−1 = β

(n−1)
1 ,

where the inequality follows from the inductive assumption.
Then from the second statement in Lemma 3, we know

that p(n)
1 ≥ p

(n−1)
1 . Suppose that p(n)

j ≥ p
(n−1)
j , for all j =

1, 2, ..., l−1. Then for cloud provider l at the nth iteration we
have

β
(n)
l =

1

Ll

∑
j>l

Lj(p
(n)
j )−1 +

1

Ll

∑
j>l

Lj(p
(n−1)
j )−1

≤ 1

Ll

∑
j>l

Lj(p
(n−1)
j )−1 +

1

Ll

∑
j>l

Lj(p
(n−2)
j )−1

= β
(n−1)
l ,

As a result, we deduct that p(n)
l ≥ p

(n−1)
l . This implies

that p(n)
i ≥ p

(n−1)
i for all i, which completes our proof of

convergence.
We now prove that the converged Nash equilibrium must

be unique by contradiction. The equilibrium result can be
represented as Φ∗ = (At∗1, At

∗
2, ..., At

∗
N ), where At∗i =

Lip
−1∗
i t−1∗

i represents the attraction of cloud provider i given
the converged equilibrium price p∗i . Since we have proved in
Lemma 3 that the optimal price p∗i for each cloud provider
uniquely exists, the corresponding expected finishing time of a
unit request experienced at cloud provider i t∗i is also uniquely
determined by Eqn. (23), which uniquely defines each At∗i in
Φ∗.

Let us assume that there exists another equilibrium result
that can be represented as Φ′ = (At′1, At

′
2, ..., At

′
N ), where

each At′i is determined by the price p′i. Express At′i = (1 +
θi)At

∗
1. By numbering the cloud providers properly, we can

assume that θ1 ≥ θ2 ≥ ... ≥ θN and θ1 > 0.

Our first argument is that θ2 > 0. If θ2 ≤ 0, it will
imply that θi ≤ 0,∀i ≥ 2, which is equivalent to say that
At′i ≤ At∗i ,∀i ≥ 2. Since for cloud provider 1, the combined
attraction of all its competitors β1 = 1

L1

∑
j≥2Atj , we have

β′1 ≤ β∗1 . Recall in our proof of Lemma 3, we proved that the
function H(pi) = piti is decreasing in βi, which implies that
p′1t
′
1 ≥ p∗1t

∗
1. We can then express the equilibrium attraction

of cloud provider 1 as

At∗1 = L1p
∗−1
1 t∗−1

1 ≥ p
′−1
i t

′−1
i = At′1 = (1 + θ1)At∗1. (29)

Eqn. (29) implies that θ1 ≤ 0, which contradicts with our
assumption that θ1 > 0.

Now, let us consider the optimization problem of cloud
provider 1 with the attractions of other cloud providers to be
At′′i = (1+θ2)At∗i ,∀i ≥ 2. Let p′′1 and t′′1 be the corresponding
optimal solution solved by cloud provider 1, then from the first
constraint in problem (24), we have

Λ(µ1r − c− µ1p
′′
1)

µ1(β′′1 p
′′
1 t
′′
1 + 1)

− cMΛ

µ1(µ1β′′1 p
′′
1 t
′′
1 + µ1 − Λ)

= Mv (30)

Since Φ∗ = (At∗1, At
∗
2, ..., At

∗
N ) is an equilibrium result, we

also have
Λ(µ1r − c− µ1p

∗
1)

µ1(β∗1p
∗
1t
∗
1 + 1)

− cMΛ

µ1(µ1β∗1p
∗
1t
∗
1 + µ1 − Λ)

= Mv (31)

Since we have proved that θ2 > 0 and At′′i = (1 +
θ2)At∗i ,∀i ≥ 2, we have β′′1 > β∗1 . Again, we can represent
the functions in Eqn. (30) and Eqn. (31) as A′′1H(p′′1)2 +
B′′1H(p′′1) + C ′′1 = 0 and A∗1H(p∗1)2 + B∗1H(p∗1) + C∗1 = 0,
where A′′1 , B′′1 , C ′′1 and A∗1, B∗1 , C∗1 take the same form
as Ai, Bi, Ci in Eqn. (27). Since β′′1 > β∗1 , we have
A′′1 > A∗1. Since ∂B1

β1
= B1−µ1Λ(µ1−Λ)

β1
, and we have B1 ≥

µ1Λ(µ1−Λ), this implies that B′′1 > B∗1 . Based on the fact that
B1

A1
=

Mvµ1(µ1−Λ)+µ2
1Mv−µ1Λ(µ1r−c)+cMΛ

Mvµ2
1β1+µ2

1Λ
+ µ1Λ(µ1−Λ)

Mvµ2
1β

2
1+µ2

1Λβ1
,

we have B′′1
A′′1

<
B∗1
A∗1

. It then follows from Eqn. (30) and
Eqn. (31) that

Λ(µ1r − c− µ1p
′′
1)

µ1(β′′1 p
′′
1 t
′′
1 + 1)

− cMΛ

µ1(µ1β′′1 p
′′
1 t
′′
1 + µ1 − Λ)

>

Λ(µ1r − c− µ1p
∗
1)

µ1(β∗1p
∗
1t
∗
1 + 1)

− cMΛ

µ1(µ1β∗1p
∗
1t
∗
1 + µ1 − Λ)

,

which is equivalent to

µ1β
′′2
1 (p′′1 t

′′
1)2 + (µ1 − Λ + 1)β′′1 p

′′
1 t
′′
1 >

µ1β
∗2
1 (p∗1t

∗
1)2 + (µ1 − Λ + 1)β∗1p

∗
1t
∗
1. (32)

If we substitute β′′1 = 1
L1

∑
j≥2At

′′
j = (1+θ2)

L1

∑
j≥2At

∗
j

and β∗1 = 1
L1

∑
j≥2At

∗
j into inequality (32), we can obtain

the result that
µ1

∑
j≥2At

∗
j

L1
[(1 + θ2)(p′′1 t

′′
1 + p∗1t

∗
1) + (µ1 − Λ + 1)]

[(1 + θ2)p′′1 t
′′
1 − p∗1t∗1] > 0.

This implies that (1+θ2)p′′1 t
′′
1 > p∗1t

∗
1, which also implies that

At′′1 < (1 + θ2)At∗1.
Now let us consider the equilibrium result Φ′ =

(At′1, At
′
2, ..., At

′
N ). Since θj ≤ θ2,∀j > 2, we have At′j ≤

At′′j ∀j ≥ 2. Again, from our proof of Lemma 3, we can obtain
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the result that p′1t
′
1 ≥ p′′1 t

′′
1 . Then we will have the following

result that

At′′1 = L1p
′′−1
1 t

′′−1
1 ≥ L1p

′−1
1 t

′−1
1 = At′1 = (1 + θ1)At∗1.

Combining the two results, it is not difficult to have the
following result that

(1 + θ2)At∗1 > At′′1 ≥ (1 + θ1)At∗1,

which means that θ2 > θ1. This contradicts with our assump-
tion that θ1 ≥ θ2, and therefore, completes our proof of the
uniqueness of the Nash equilibrium.

Again, when all cloud providers in the market have the same
resource capacity, we are able to obtain an analytical form of
the Nash equilibrium solution, which can be derived by solving
the optimization problem (24). In the next theorem, we wish to
establish the fact that a unique Nash equilibrium exists in the
oligopoly market of homogeneous cloud providers, and that
Algorithm 2 always converges to such an equilibrium price.

Theorem 5: When reduced to homogeneous cloud
providers, i.e., µi = µ and Li = L, for all i, the Nash
equilibrium with N cloud providers (p∗1, p

∗
2, ..., p

∗
N ) takes the

form of:

p∗i = r − c

µ
− NMc

µ(Nµ− Λ)
− NMv

Λ
,

with the corresponding market shares fi = Λ/N , for all i.
Proof: Again, when cloud providers are equivalent to one

another, the equilibrium solution is symmetric [26], i.e., f∗i =
f∗ and p∗i = p∗ for all i. From the MCI model of the market
share, we know immediately that the market share of each
cloud provider i equals

f∗i = Λ

(
Lip
∗−a
i t∗−bi∑N

j=1 Ljp
∗−a
j t∗−bi

)
=

Λ

N
= f∗,

since t∗i = 1
µ−f∗ = t∗ for all cloud provider i. Since f∗i also

takes the form of f∗i = Λ
β∗
i
p∗
i
t∗
i
+1 , we have β∗i p

∗
i t
∗
i + 1 = N .

Based on the constraints in problem (24), we have

Λ(µr − c− µpi)
µN

− cMΛ

µ(µN − Λ)
≥Mv,

which is equivalent to

pi ≤ r −
c

µ
− MvN

Λ
− cMN

µ(µN − Λ)
,

Now we can complete the proof that with the objective of
maximizing the expected profit, the optimal price for each
cloud provider i takes the form of p∗i = r − c

µ −
NMc

µ(Nµ−Λ) −
NMv

Λ , for all i.
By comparing with results in Theorem 2, we can see that the

Nash equilibrium in an oligopoly market is in the general form
of that in a duopoly market. All cloud providers in the market
will charge the same price that has the form of the monopoly
price pΛ, with each of them taking 1/N of the market. In
other words, each cloud provider will behave independently
and operate exactly the same as a monopolist, when all of
them have the same resource capacity. The comparative statics
of the homogeneous Nash equilibrium price in an oligopoly
market is the same as what was shown in Corollary 2.

V. EVALUATION

We now present our evaluation results based on simula-
tions, on how the Nash equilibrium is influenced by both
cloud providers and cloud users. From the cloud providers’
perspective, we study the effects of resource capacities on
equilibrium prices. On the cloud users’ side, we show how
the task importance and urgency can influence the equilibrium
prices of the cloud service. The design of our simulator is
based on a time-slotted synchronous model, with all events
generated and processed in their respective time slots. Our
simulator is developed in the MATLAB environment.

A. Analyzing the Nash Equilibrium in a Duopoly Market

We begin our evaluation with two cloud providers compet-
ing in the market. Since the proposed algorithm is shown to
be able to find the Nash equilibrium prices within a small
number of iterations, the equilibrium prices in each simulated
scenario are obtained by Algorithm 1. Our simulation results
have further validated our analytical results in Sec. IV.

We assume that there are 20 cloud users in the market, i.e.,
M = 20. Except otherwise specified, the resource capacity
of each cloud provider is set to be µ1 = 2 and µ2 = 4; the
operating costs γ1(µ1) and γ2(µ2) are set to be 0 to focus
only on the price competition; the reservation value v is set to
be 1; the benefit factor r is set to be 5; and the waiting cost
factor c is set to be 1 for all cloud users. User j’s request rate
λj for the cloud service is uniformly random in (0, 0.05), as
the total request rate has to be smaller than the total service
rate to avoid an unlimited queueing delay.

Effects of resource capacities on equilibrium prices: We
first study how a cloud provider’s resource capacity, µ, will
affect the Nash equilibrium prices. In this scenario, µ1 is set
to be 2, µ2 > µ1 and their ratio is assumed to range from
1 to 4. Fig. 6 shows how the Nash equilibrium price and the
market share of cloud provider 2 react when its server capacity
increases, while that of cloud provider 1 remains the same.
As we can see, both the usage price and the market share
increase with the resource capacity. To further understand
the impact of resource capacities on both cloud providers,
we compute the ratio of Nash equilibrium prices as well as
the ratio of market shares of the two cloud providers. Our
results in Fig. 7 show that, when resource capacities change
while other characteristics remain constant, the comparative
advantage of cloud provider 2 to cloud provider 1 on both
price and the market share also increases, which further proves
the importance of the resource capacity.

Effects of resource capacities on expected profits: Since
the objective of cloud providers is to maximize their expected
profits, we now discuss how expected profits are influenced
by resource capacities. In our discussion, the expected profit
of a cloud provider equals its usage price times its market
share. Shown in Fig. 8, the expected profit of cloud provider
2 does not increase evidently after a certain threshold, and
may even decrease, with linear, exponential and step functions
for operating costs. The rationale is that when the resource
capacity increases, the cloud provider is able to charge a
higher price and attract more users, and hence is able to
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Fig. 6. Effects of resource capacities
on a cloud user’s equilibrium price
and its market share.
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Fig. 7. Effects of resource capacities
on the ratio of equilibrium prices and
market shares.

generate more profit. However, if the cloud provider continues
to increase its resource capacity, the operating cost, such as
power consumption, may be too large to be made up by the
increased revenue, which may result in reduced profit.
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Fig. 8. Effects of resource capacities on a cloud provider’s expected profit
with different operating cost functions (a = 10, b = 8, and k = 1.4).

B. Analyzing the Nash Equilibrium in an Oligopoly Market

We are now ready to use our algorithm in finding the Nash
equilibrium prices to derive some interesting observations, as
multiple cloud providers are competing for the same pool of
cloud users. Our evaluation is conducted in a scenario with 4
cloud providers, with resource capacities of µ1 = 150, µ2 =
250, µ3 = 200, and µ4 = 500, respectively. To focus on
the price competition only, the operating costs are set to be
zero, and the combined effects of other factors are set to be
L1 = L2 = L3 = L4 = 1. With the same number of 20 cloud
users in the market, the reservation value v is set to be 1; the
benefit factor r is set to be 20; and the waiting cost factor c
is set to be 100 for all cloud users. User j’s request rate λj
for the cloud service is uniformly random in (1, 10).
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in a cloud market.
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each cloud provider.

Fig. 9 shows the price of each cloud provider at each
iteration. As we can see, when we set the initial price and
the convergence criteria of four cloud providers to be 0.001,
our proposed algorithm can find the Nash equilibrium prices
in this market within 7 iterations. The Nash equilibrium has
further confirmed our conclusion that the cloud provider with
a larger resource capacity is able to charge a higher price in
a competition market. In addition, Fig. 10 shows the average
market shares and expected revenues of each cloud provider,
together with the corresponding 95% confidence interval. It is
interesting to observe that, though equipped with very different
resource capacities (e.g., C4 offers twice the capacity over
C2), each of the four cloud providers takes approximately an
equal amount of the market share. This shows that doubling
the resource capacity may not necessarily increase the market
share by any significant margin. With respect to the expected
revenue, a larger resource capacity does lead to more revenue;
but this may not directly translate to higher profits, due to
the escalating capital and operation expenses associated with
larger capacities. We will discuss more implications of these
observations in the next section.
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Since the initial price of each cloud provider may affect the
number of iterations that our algorithm needs to achieve the
Nash equilibrium, we are interested in how this initial price
will affect the convergence of the proposed algorithm. Shown
in Fig. 11, when the initial price varies from 10 to 10−5,
the number of iterations our algorithm requires to converge
has been very mildly affected, only increasing from 5 to 8.
As a result, even if we set the initial price of each cloud
provider to be a very small number to avoid missing the Nash
equilibrium price, our algorithm can always converge within
a few iterations.

As introduced in Sec. IV-B, the Multiplicative Competitive
Interaction (MCI) model is used in our analysis to capture
the relationship between usage prices and market shares in an
oligopoly market. It has incorporated the ability to represent
how cloud users feel towards the service of a cloud provider,
including alternative influential factors such as whether the
Application Programming Interface (API) is secure and easy
to use, how load balancing is to be performed, as well as
the reputation and brand of the cloud provider. As the final
experiment in this section, we are interested in investigating
the combined effects of these alternative factors. We use
two cloud providers as an example, with resource capacities
µ1 = 150 and µ2 = 500. Fig. 12 shows when the ratio of L2

L1

varies from 0.1 to 1, how relative differences of their usage
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prices, their market shares, and their expected profits change
accordingly. As the ratio becomes smaller, it represents the
fact that the provider with a larger capacity has become less
attractive to cloud users due to the combined effects of the
alternative factors. As we can observe from the figure, being
less attractive to cloud users does not affect the usage prices,
as the two cloud providers have the same prices over the
entire range of ratios (i.e., the relative difference remains zero).
That said, as the provider with a larger capacity has become
less attractive due to alternative factors, both its market share
and its expected profit decrease significantly, to the point that
they can be smaller than its competitor with a third of the
capacity. This implies that if a cloud provider wishes to keep
its competitive edge, it needs to become more attractive with
respect to alternative quality factors, such as its reputation and
brand. We will discuss more implications in our concluding
remarks.

VI. DISCUSSIONS AND CONCLUDING REMARKS

In this paper, we have studied the problem of price com-
petition in a market with multiple IaaS cloud providers. In
particular, we have focused on answering the question: when
multiple IaaS providers face a common pool of potential users,
how should each one of them choose the optimal price that
maximizes its own profit? Intuitively, if prices are set to be too
high, cloud users will choose alternative cloud providers; but if
they are too low, the overwhelming demand for resources from
a large number of cloud users may increase the task finishing
times, therefore negatively affecting the performance of cloud
applications and the utility of cloud users. By modeling each
provider as an M/M/1 queue, we analyze this problem using a
game theoretic technique in monopoly, duopoly and oligopoly
markets. We have derived the sufficient condition for the
existence of a Nash equilibrium and propose two iterative
algorithms for each provider to find its equilibrium price in the
duopoly and oligopoly market, respectively. Our algorithms
represent a first step towards designing practical mechanisms
to price resources in operational IaaS cloud providers, and are
shown to converge quickly.

One important question that is closely related to our anal-
yses and evaluation remains: What an IaaS cloud provider,
either an established one or a new player making its market
debut, should do to attract new customers and to stay com-
petitive? By analyzing the Nash equilibrium in an oligopoly
market where multiple IaaS providers compete, our evaluation
have pointed to some intriguing observations that are worth
discussing.

At a first glance on our evaluation results, to become more
competitive in the market and to gain a larger market share,
a cloud provider may initially choose to increase its resource
capacity. Yet, the Total Cost of Ownership (TCO), including
capital expenses (CAPEX) and operating expenses (OPEX),
escalates as cloud providers add to their resource capacities.
Such escalating costs may become an important contributing
factor that leads to much smaller marginal gains, or even
marginal losses, in profits at the IaaS cloud providers.

Our results in Sec. V-B have provided some interesting
insights for further discussions on improving the profit of

an IaaS cloud provider. As shown in Fig. 10, a larger IaaS
provider with twice the resource capacity may only gain a
very marginal increase in its market share. Coupled with
the higher TCO in maintaining higher capacities, a cloud
provider should definitely consider to improve other alternative
dimensions of quality in its cloud services, including security,
privacy policies, availability of services, data consistency, and
ultimately, better service-level agreements that guarantee the
performance in a combination of service-level objectives. The
aggregate of additional dimensions in its quality of service
will be reflected over time in the reputation or brand value of
a cloud provider, which will lead to a higher market share and
profit.

In Sec. V-B and Fig. 12 in particular, thanks to the fact that
our MCI model is able to capture the effects of alternative
factors, we have shown that the market share and profit of a
much larger cloud provider with more than triple the resource
capacity may be similar to its much smaller competitor, if the
combined effect of the other alternative quality dimensions is
five times worse. This observation provides a strong motivation
for an IaaS cloud provider to offer service-level agreements
with regards to a number of service-level objectives (e.g.,
availability and response times) that are weighted more heavily
in the cloud user’s favour, and to charge higher prices ac-
cordingly. While queueing theoretic models are not suitable to
provide explicit guidelines on how stronger guarantees may be
provided by the IaaS provider on security, privacy, availability,
and data consistency, they are nevertheless important factors
that contribute to the brand and reputation of the provider.
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