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Model Deployment: Cloud or Edge?

Cloud -> transmission overhead and privacy issue
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Model Deployment: Cloud or Edge?

Edge -> Limited computation capacity leads to high latency

Edge devices
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Another idea: distribute the inference workload for acceleration



How to partition the inference workload

» Sequential partition
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» Partition the model layer-wise
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» The computation resources are underutilized

» Parallel partition

» Parallel paths executed simultaneously
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Convolution Operation

"Sliding window" applied on the image step by step
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Model Partition - Single Conv Layer

Step 1: decide the range of output partition

Step 2: calculate the range of the required input

Step 3: feed the input partition to the convolution layer
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Model Partition - Chained Layers

Chain structured model, e.g., VGG-16
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Existing Solution: DeepThings



Model Partition - Computation Graph

Directed Acyclic Graph (DAG) structured model, e.g., ResNet
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Some computation graphs can be easily turned into a
chain, and manually fix the layer dependency.



Model Partition - Computation Graph

Some not... like YoloVb
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Our Design - EdgeFlow Overview

» Setup Phase
» partition the computation graph into execution units

» The layer dependency is maintained by th
communication between execution units

Computation Graph

Required Computation Forward
Input Operator Table
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Our Design - EdgeFlow Overview

» Inference Phase
» Execution units collaboratively finish the inference

» Equivalent result as computed on a single device
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Model Partitioning

» Layer partitioning
» Each execution unit computes part of the output of this layer

» Calculate the required part of the input needed to
complete the computation task

» Update the forward table of preceding execution units
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Problem Formulation

» Assume 7 available devices, output features of current layer ranges from row 0 to row H

» [he partition decision variables can be expressed as an integer vector
X = (X, X{5 .-+ X,)

» device 1 computes output ranges fromrow x;_; + 1 torow x;

v, €Z7.i=0,1,....n
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Problem Formulation

» Objective: finish time of the current layer [

» T, ; denote the time that device i finish its partition of layer /

» The optimization problem can expressed as

min  max(7;1,772,...,11.n)

X
st. z;, €Z7,i=0,1,....,n
rxo =02, =H
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Problem Formulation

> Tl ; estimation: transmission time + computation time
CZﬂl,z’ — ttrans(i; l) =+ tcomp(i; l)

» Computation time can be estimated with a pre-trained

linear regression model number of rows to compute
. /!
tcamp(z) — Ya(mz — Lj—1; l)
~ .
layer settings
o . . finish time of layer m at device |
> [ransmission time can be estimated by .. . trt{nsmission Hone
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Problem Transformation

> Original problem min  max(1y,1,T12,...,71,n)

st. z;, €Z7,i=0,1,....n
xo=0,x, =H

ro <7 <--- <y,

» Step 1: introducing auxiliary variable and relax the
Integer constraint

min A\
T,

st. Tp; < ANied{l,...,n}
v, €Z7,i=0,1,....n
xo=0,2, = H

ro <z <o <
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Problem Transformation

» Step 2: removing the indicator function

pmaia . |
Lpom.i s >0} (Tim,j - B. ,J) Yz — 2i-151) < A
0]

The finish time of layer m at different device
should be roughly the same

Aslong as /,, ; is not greater than other

required devices, the constraint is loose, and
won't affect the result.
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Problem Transformation

» Step 3: re-express the transmission size

Pm.i.j is the overlapping area between the required input range (s

and the output range (x,, ;_;, x,, ;) of layer m at device j

9j_1,

Pm,i,j = MiN(€;, Tpy 5) — MaAX(S;, Tpy,j—1)

— mlﬂ(fiz — 5,6 — LIm,j—1,Lm,j — SiyLm,j — $m,j—1)

min — pm’i,j
Pm,i,j
S.t. Pm,i,j < e — Siy  Pm,i,j < € — Lm,j—1;

Pmyij < Tm,j — Sis  Pmyig < Tm,j — Tm,j—1-
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Problem Transformation

» Linear Programming Approximation
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Model Partition

» Partition the model layer by layer in topological order

» Solve the LP problem for each layer to obtain the partition
scheme

» The finish time estimation of previous layer becomes a
parameter of the optimization problem of the following

layers
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Padding Issue

» Directly feeding the input partition to the conv/pool layer may not yield the correct
output

Original Input Padded Input Original Output
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Padding Issue

» Solution: pre-padding mechanism

» Set the padding parameter of conv/pool layer to O

» Manually add paddings when necessary

1s = 05 X stride — padding,

te = (0. — 1) X stride + kernel_size — padding,

. —1s, 1s <0
upper -padding = { 0 Sothesrwise

)

e — H; e > H;

bottom_padding = { 0.  otherwise
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Inference Phase

» [he units will be executed when the Iinput
requirements are satisfied

> [he output will be forwarded to fulfill the
requirement of next execution unit

» Intermediate results flow through execution units to

finish the inference \

System name : EdgeFlow
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Evaluation

» 2 deep learning models

» VGG-16: Classic image classification model in chain structure

» YoloV5X: Latest object detection model with complicated
structure

» © heterogeneous virtual machines

» Baselines

» Local: deploy the model on a single device

» Existing methods: Deeplhings and CoEdge
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Evaluation

Proposed method (EdgeFlow-P) achieves lowest inference latency
with both models
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Evaluation

» Partition scheme of YoloV5
» Deeplhings: redundant computation in the early layers
» CoEdge: workload gradually concentrates on a single device
» EdgeFlow: relatively even distribution among devices
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Evaluation

EdgeFlow-H and CoEdge share the same partition scheme, yet still

faster than CoEdge
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Conclusion

» The model structure significantly affects the
performance of existing distributed inference
systems.

» EdgefFlow breaks the layer into execution units, and
maintain the complicated layer dependencies by
controlling the flow of intermediate results.

» Evaluation results show EdgefFlow has a distinct
advantage, especially with complicated DAG-
structured model
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