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Abstract—Cross-silo federated learning (FL) is an emerging
approach for institutions to collaboratively train a machine
learning model without sharing their siloed data. However, it
conventionally requires institutions to centrally store their clients’
data, posing a threat to clients’ privacy. This paper thus studies
a preferable setting to leave data distributed to clients, where
traditional FL is used not only across institutions but also among
their clients. As this new setting inherits or even exacerbates the
major problem of communication inefficiency in the traditional
setting, we explore the feasibility of leveraging two compression
techniques, pruning and quantization, to improve communication
efficiency. Starting by applying off-the-shelf pruning and quan-
tization mechanisms, we observe that they could largely reduce
communication overhead with a negligible reduction, sometimes
even a slight increase, in training performance. By mathemati-
cally analyzing the impact of compression on the performance of
the trained model, we find that pruning and quantizing with a
proper amount can offset possible performance degradation due
to non-i.i.d data. Based on this finding, we propose FEDSAW, a
new cross-silo FL framework that can improve communication
efficiency by adaptively tuning the pruning amount and quantiz-
ing updates throughout training. In our extensive evaluation with
six benchmark datasets, FEDSAW consistently outperformed its
state-of-the-art competitors. It decreased the wall-clock training
time and communication overhead used for converging to the
target accuracy by up to 86.7% and 91.5%, respectively.

I. INTRODUCTION

Since the performance of a machine learning model is
strongly related to the amount of data available for its training,
different institutions (e.g., financial or medical organizations)
share the incentive of leveraging their siloed data to train a
global model with high performance [1]–[3]. However, under
most circumstances, such data cannot be shared directly due
to confidentiality or legal constraints. As a response, cross-silo
federated learning (FL) [4] has been proposed as an appealing
solution to enable institutions to collaboratively train a global
model without sharing their privacy-sensitive siloed data.

It is routine for previous studies on cross-silo FL to consider
a two-layer structure, only containing one central server and
several institutions. They implicitly assume that each insti-
tution centrally stores raw data from a massive number —
potential tens of thousands — of clients. Each client is likely
an edge device, such as a mobile phone, generating large
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volumes of data. During one iteration of the global model
training in the conventional cross-silo FL, each institution
computes an updated model based on the current global model
maintained by the central server with its siloed data, and only
communicates this updated model with the central server.

Although data privacy within the confines of institutions can
be well-preserved under such a two-layer structure, clients are
under privacy risks. For clients in the financial, banking, and
medical industries, their data should be kept private rather
than stored within the same institution. Moreover, from the
perspective of performance, sending raw data from clients to
their institutions could take a much longer time than sending
model updates. These above-mentioned issues motivate a
three-layer structure, where traditional FL is used both across
institutions and among their clients. Since institutions serve
as edge servers in such a three-layer structure, we call them
edge servers in the rest of this paper.
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Fig. 1: A three-layer structure of cross-silo FL.

In this paper, we focus on the new and more realistic context
of cross-silo FL with a structure of three layers shown in
Fig. 1. A global training iteration starts with the central server
sending the current global model to edge servers, which pass
it to their clients. These clients on the bottom layer then
conduct local training to update the model with their local
data and send their updated models to their edge servers.
Each edge server on the middle layer aggregates its clients’



models and sends its aggregated model back to its clients for
several other rounds of local training on clients and local
aggregation on itself. Finally, the edge server transfers its
aggregated model to the central server. The central server then
generates an improved global model by aggregating all edge
servers’ aggregated models.

However, a major defect, low communication efficiency, is
buried in this three-layer structure. The exceedingly frequent
exchanges of model weights throughout the training process
may easily lead to massive communication overhead, due to
the tremendous number of clients and large sizes of modern
machine learning models. To make matters worse, limited and
unstable network connections of clients, which are typical in
FL, may further exacerbate the problem and result in a long
training time. Additionally, it is common in the real world
that clients’ local datasets are non-i.i.d. (not independent and
identically distributed). Existing works have proved that non-
i.i.d. data could significantly reduce the accuracy and slow
down the convergence of the global model [5], [6].

While abundant advanced methods have been proposed
to improve the communication efficiency of FL, by and
large, they only consider the traditional two-layer FL [7]–
[9]. The three-layer cross-silo FL remains rarely explored
and undoubtedly poses more challenges as it involves more
communication. Moreover, we find that not all existing works
on FL shared their implementations as open-source, and those
open-source ones fell short of evaluating FL mechanisms
appropriately. Hence, we start by implementing PLATO, an
open-source research framework for scalable FL research
from scratch, and use it to conduct extensive experiments of
applying popular compression techniques in machine learning,
pruning and quantization, to investigate if they can improve
the communication efficiency in three-layer cross-silo FL.

Surprisingly, the results of our preliminary empirical study
show that even an off-the-shelf pruning mechanism, L1-norm
unstructured pruning, can significantly reduce communica-
tion overhead with negligible degradation in global model
accuracy. With a simple adjustment, which is to prune local
model updates instead of local model weights, the global
model trained with pruning can converge to higher accuracy
within a shorter amount of time. Quantization also indicates
its potential of largely reducing the elapsed training time
and communication overhead for the global model to reach a
target accuracy. Given these observations, we mathematically
analyze the impact of applying these compression techniques
on the performance of the trained global model.

A notable remark of our analysis is that properly pruning
and quantizing updates before sending them out for aggrega-
tion can effectively offset the accuracy reduction of the global
model brought by non-i.i.d. data. We thus propose a new
framework, FEDSAW, to improve communication efficiency
and global model performance in three-layer cross-silo FL. As
our analysis indicates that the weight difference between each
edge server’s aggregated model and the current global model
is directly related to the global model performance, FEDSAW
adaptively tunes each edge server’s and its clients’ pruning

amount, i.e., the percentage of parameters in updates to be
zeroed out, and decides whether to quantize pruned updates
based on the weight difference between the edge server’s
aggregated model and the global model.

Original contributions. Highlights of our original contri-
butions in this paper are as follows. First, as far as we know,
we are the first to study communication efficiency in cross-
silo FL with three layers. Second, we implement PLATO, an
open-source research framework for scalable FL research from
scratch, and conduct extensive experiments on it to motivate
using pruning and quantization for higher communication ef-
ficiency. Third, as our empirical study indicates the promising
potential of pruning and quantization on boosting communica-
tion efficiency with an insignificant reduction or even increase
in global model accuracy, we further mathematically analyze
the performance of the global model trained with these two
compression techniques, and deduce that a proper pruning and
quantization amount can offset the accuracy reduction brought
by non-i.i.d. data. Finally, we design a new cross-silo FL
framework, FEDSAW, to increase communication efficiency
by adaptively tuning the pruning amount and quantizing
updates of each edge server and its clients. Results of six
benchmark datasets show that compared with its state-of-the-
art competitor, FEDSAW can largely reduce the elapsed wall-
clock training time and communication overhead for the global
model to reach a target accuracy.

II. PRELIMINARIES

A. Three-Layer Cross-Silo FL

Suppose that there are N clients and M edge servers in
total. Each client n, n ∈ [N ] = {1, 2, . . . , N}, stores a
local dataset Dn, which is a collection of training samples
{xi, yi}|Dn|

i=1 . Every client belongs to one edge server. C(m)

denotes the set of edge server m’s clients. For simplicity, we
denote the union of the local datasets of edge server m’s clients
as D(m) := tn∈C(m)Dn, and the union of all local datasets as
D := tMm=1D(m).

We consider a classification problem of S classes. The
problem is defined over a compact space X and a label space
Y = [S]. Any data point {x, y} of a local dataset distributes
over X×Y . The goal of FL is to find the global model weights
w that can characterize the output yi given the input xi,
{xi, yi} ∈ D, with the loss function fi(w). If D is centralized
on the central server, the objective can be formulated as

min
w

f(w) where f(w) :=
1

|D|

|D|∑
i=1

fi(w). (1)

However, the central server does not have access to D.
To generate the global model in three-layer cross-silo FL,
we utilize the Federated Averaging (FedAvg) algorithm [10],
the most frequently used algorithm in conventional two-layer
FL, which combines local stochastic gradient descent (SGD)
on each client with a central server that performs model
averaging. Here, we still let each client conduct local SGD
with its local epoch number of τc, minibatch size of B, and
learning rate of η. But instead of directly communicating with



the central server in FedAvg, the client sends its locally trained
model to its edge server for local aggregation. In the t-th global
training iteration and the te-th round of local aggregation at
edge server m, its client n updates its local model wn at its
tc-th local training epoch as:

wn(t, te, tc) = wn(t, te, tc − 1)− η
S∑
s=1

pn(y = s)·

∇wnEx|y=s
[

log fs(x,wn(t, te, tc − 1))
]
,

(2)

where tc ∈ [τc] and te ∈ [τe].
Each edge server m performs local aggregation after receiv-

ing locally trained models from its clients:

w(m)(t, te) =
∑

n∈C(m)

|Dn|
|D(m)|

wn(t, te, τc). (3)

To generate a locally aggregated model that can contribute
more to improve the global model accuracy, edge server m
does not send its w(m)(t, te) to the central server when te <
τe. Instead, it sends w(m)(t, te) back to its clients, lets it be
the initial model wn(t, te + 1, 0) for their local SGD, and
generates another aggregated model w(m)(t, te + 1). An edge
server will conduct this kind of local aggregation for τe rounds
before sending w(m)(t, τe) to the central server.

After receiving aggregated updates from all the edge servers,
the central server generates an improved global model:

w(t) =

M∑
m=1

|D(m)|
|D|

w(m)(t, τe). (4)

If this new model satisfies a predefined condition such as
finishing T training iterations or convergence, the training
ends; otherwise, a new training iteration starts with the central
server sending the current global model to all the edge servers.

B. Pruning

Pruning [11] is one of the most effective methods to
compress machine learning models [12]. In general, neural
networks are over-parameterized. Pruning can cut down the
number of parameters to decrease model sizes without sac-
rificing their accuracy. Therefore, it has been considered a
promising solution to improve communication efficiency in
FL [13]–[17]. By pruning local models before transferring
them, communication overhead can be sharply reduced.

Modern pruning techniques can be classified into structured
(channel-level) and unstructured (parameter-level) pruning. We
focus on unstructured pruning, which zeros out parameters that
are less important to the model performance. There are dif-
ferent heuristics and methods to determine which parameters
are less important and can be removed with minimal effect on
model accuracy. One common method is to use magnitude,
for example, L1 norm, to approximate the importance of each
parameter. The intuition is that smaller magnitude parameters
have smaller effects on the output, and hence are less likely
to degrade model performance if they are pruned.

III. MOTIVATION

This section presents our empirical study on applying prun-
ing and quantization to three-layer cross-silo FL. The results
motivated our new framework, FEDSAW. The experimental

implementation we used throughout this paper is within our
open-source research framework PLATO. Since a complete
narrative on PLATO is beyond the scope of this paper, we
first present a brief introduction of it in this section, and then
demonstrate our empirical study in detail.

A. PLATO: Our Open-Source Research Framework Created
from Scratch

As no existing works on cross-silo FL shared their im-
plementations as open-source, and existing open-source FL
frameworks fell short of evaluating cross-silo FL mechanisms
appropriately, we have implemented PLATO, an open-source
research framework for scalable FL research from scratch,
which is available at https://github.com/TL-System/plato. De-
velopment on PLATO started in November 2020, and so
far amounted to around 37 person-month of research and
development time. PLATO is designed and built with several
key objectives: it is scalable to numerous clients, extensible
to accommodate a wide variety of datasets, models, and FL
algorithms; and agnostic to deep learning frameworks such as
TensorFlow and PyTorch. In PLATO, communication among
the central server, edge servers, and clients is over industry-
standard WebSockets. The central server may run on either the
same GPU-enabled physical machine as its edge servers and
clients, which is suitable for an emulation research testbed, or
be deployed in a cloud datacenter.

B. Cross-Silo FL with Pruning

To explore the impact of pruning on the training perfor-
mance of three-layer cross-silo FL with experiments, we study
with four image classification tasks: the LeNet-5 model with
the EMNIST dataset and the FEMNIST (Federated Extended
MNIST) dataset, the ResNet-18 model with the CIFAR-10
dataset, and the VGG-16 model with the CINIC-10 dataset.

We conducted our experiments on NVIDIA A100 GPUs
with 40 GB CUDA memory. Except for FEMNIST dataset
which inherently provides 3597 local datasets with a highly
skewed non-i.i.d. distribution, we sampled the other three
datasets with the symmetric Dirichlet distribution with a con-
centration of 5 to generate non-i.i.d. local datasets. There are 5
edge servers, and each of them has the same number of clients.
In every global training iteration, each edge server conducts 4
local aggregation rounds before sending its aggregated model
to the central server. For local training of clients, we set the
batch size to 32, epoch number to 5, learning rate to 0.01, and
momentum to 0.9 in all our tasks. Other important parameters
used across our tasks are listed in Table I, where |C(m)| is the
number of each edge server’s selected clients.

TABLE I: Parameter settings.

Parameter EMNIST FEMNIST CIFAR-10 CINIC-10

N 1000 3597 1000 1000
|C(m)| 20 20 6 6

Weight decay 0 0 0.0001 0.0001

As a starting point, we use a simple pruning technique,
L1-norm unstructured pruning, to zero out 40% model pa-

https://github.com/TL-System/plato


rameters with the lowest L1-norms for each client’s locally
trained model as well as each edge server’s locally aggregated
model. We also implement Zstandard [18], a fast real-time
compression algorithm, in PLATO to compress data before
communication, so that zeros in transferred models will take
up almost no space. For example, 0.24 MB of data needs to
be communicated when transferring a LeNet-5 model without
pruning. After applying pruning and the Zstandard algorithm,
clients and edge servers only need to send data of around
0.15 MB. Therefore, the communication overhead in each
global training iteration is largely reduced, and so is the
communication time of each global training iteration.

Although in FedAvg and most FL algorithms, client n sends
wn, the weights of it locally trained model, we conjecture
that when leveraging the L1-norm unstructured pruning, it
would be more beneficial to prune and send updates of
local models. That is, instead of pruning wn(t, te, τc) and
sending the pruned local model to its edge server, client
n sends pruned wn(t, te, τc) − w(m)(t, te − 1), the weight
difference between its trained model and the model received
from its edge server m before its local training. Likewise,
rather than pruning and uploading w(m)(t, te), edge server m
sends pruned w(m)(t, te) − w(t − 1), the weight difference
between its locally aggregated model and the model received
from the central server at the beginning of this global training
iteration. The intuition behind this conjecture is that training
performance would decrease if the global model is aggregated
with pruned weights of local models, which are different from
the original weights before pruning, as a certain amount of
them are zeroed out. While pruning updates only make some
weights of local models revert to their values before local
training or local aggregation, as if some weights of the global
model have not been trained by some clients.
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(a) EMNIST (LeNet-5)

20 40 60 80 100120140160180200
Elapsed wall-clock time (minutes)

60
62
64
66
68
70
72
74
76
78
80

Gl
ob

al
 m

od
el

 a
cc

ur
ac

y 
(%

)

No pruning
Pruning weights
Pruning updates

(b) FEMNIST (LeNet-5)
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(c) CIFAR-10 (ResNet-18)
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Fig. 2: Performance comparison of no pruning, pruning model
weights, and pruning model updates.

Fig. 2 illustrates the test accuracy of global model trained

with or without pruning. The first observation is that the
results strongly support our conjecture. Pruning model updates
outperformed pruning model weights in all four tasks. It
always reached higher test accuracy of the global model within
the same amount of elapsed wall-clock training time.

Interestingly, these results also reveal that pruning model
updates can sometimes increase global model accuracy. When
training with the FEMNIST, CIFAR-10, and CINIC-10 datasets,
pruning model updates results in higher global model ac-
curacy compared with no pruning. This finding may seem
counterintuitive, as pruning zeros out some parameters in
updates computed by local SGD, which is equivalent to
not conducting the local training. However, the mathematical
analysis presented in the next section well substantiates such
accuracy improvements due to pruning model updates.

C. Cross-Silo FL with Quantization

In addition to pruning, there is another popular compression
technique, quantization. Commonly, machine learning models
use the format of 32-bit floating-point. If we quantize edge
servers’ aggregated updates and clients’ updates to the 16-
bit floating-point format, the communication overhead for
transferring them can be cut by half.

However, as parameters are converted from 32-bit to 16-
bit floating-point numbers, quantization may decrease the
accuracy of the global model. Although the communication
overhead in one round is reduced, it is possible that the global
model needs more rounds to reach a target accuracy, which
could increase the total communication overhead. Hence,
we preliminarily test the feasibility of using quantization to
improve communication efficiency in three-layer cross-silo FL.

We compare the performance of the basic cross-silo FL
without pruning or quantization as the baseline, with L1-norm
pruning, with quantization, and with L1-norm pruning and
quantization in the same four tasks and experimental settings
as Section III-B. Table II lists the elapsed time for the global
model to reach a target accuracy. The numbers in brackets are
the percentages of reduced elapsed training time of baseline.

Compared with baseline, quantization always reduced
elapsed training time. When training with the EMNIST and
FEMNIST datasets, applying both pruning and quantization had
the best performance. In the task of training with the CIFAR-10
dataset, just using quantization reduced 32% time of the
baseline. However, using quantization in addition to pruning
did not always result in the best performance. In the task of
training with the CIFAR-10 dataset, using pruning resulted
in the best performance. While training with the CINIC-10
dataset, although using pruning or quantization separately
decreased training time, applying them at the same time failed
to reach 57% accuracy, indicating possible degradation of
combining these two compression methods in cross-silo FL.

Table III shows the performance of quantization regard-
ing the communication overhead through a training session.
Generally, quantization reduced communication overhead by
a significant amount. For example, in the task of training the
VGG-16 model with the CINIC-10 dataset, it reduced 78%



TABLE II: Elapsed wall-clock training time to reach a target accuracy with compression in different tasks.

Dataset Model Target
Accuracy

Elapsed Training Time (Hours)
Baseline Pruning Quantization Pruning + Quantization

EMNIST LeNet-5 77% 0.42 0.47 (-13.16%) 0.29 (29.58%) 0.24 (41.12%)

FEMNIST LeNet-5 73% 1.18 1.08 (8.32%) 0.83 (29.81%) 0.69 (41.05%)

CIFAR-10 ResNet-18 85% 2.27 1.46 (35.70%) 1.54 (32.06%) 1.78 (21.46%)

CINIC-10 VGG-16 57% 3.81 1.72 (54.97%) 1.07 (71.98%) -

TABLE III: Communication overhead to reach a target accu-
racy with compression in different tasks.

Dataset Communication Overhead (GB)
Baseline Pruning Quantization Pruning + Quan

EMNIST 1.01 1.18 0.51 (49.42%) 0.41 (59.58%)

FEMNIST 2.90 2.73 1.46 (49.43%) 1.18 (59.34%)

CIFAR-10 53.37 35.75 26.71 (49.96%) 29.71 (44.33%)

CINIC-10 98.43 47.14 21.10 (78.56%) -

communication overhead to reach 57% accuracy compared
with training without quantization. However, it has the po-
tential disadvantage of reducing global model accuracy.

Given that both pruning and quantization showed promising
capabilities of improving the performance of cross-silo FL
with three layers, we propose a new framework, FEDSAW to
utilize these two compression techniques. However, such an
improvement would be counterintuitive, as compression omits
information in updates and may degrade the performance of
the trained global model. Moreover, our experimental results
show that using both pruning and quantization did not always
lead to the best results. Therefore, we analyze the performance
of the global model trained with pruning and quantization
in the next section. Our mathematical analysis not only
substantiates the seemly counterintuitive improvement due to
compression, but also provides insights for designing FEDSAW
to improve the communication efficiency.

IV. MATHEMATICAL ANALYSIS

One way to measure the global model performance is to
compare the global model weights w(T ) trained in FL with
weights of a model w∗(Tτeτc) trained by centralized SGD
as if clients’ data are centrally stored [5]. In such centralized
SGD, the batch size is N times larger than that of local SGD,
where N is the number of clients.

The centralized SGD updates its model in the t-th epoch as

w∗(t) =w∗(t− 1)− η
S∑
s=1

p(y = s)·

∇w∗Ex|y=s
[

log fs(x,w
∗(t− 1))

]
,

(5)

where p is the probability for the data distribution of D.
The ideal case for FL is that w(T ) equals to w∗(Tτeτc),

where T is the total number of global training iterations.
Here we define w∗(T, τe, τc) := w∗(Tτeτc) to be consistent
with the format of local model wn(T, τe, τc) of client n.
Hence, the training performance of FL can be quantified by
differences between w(T ) and w∗(T, τe, τc), which we denote
as ∆w(T ) := ‖w(T )−w∗(T, τe, τc)‖.

Assuming that ∇wEx|y=s[log fs(x,w)] is λx|y=s-Lipschitz
for each class s ∈ [S], we extend the analysis of traditional
two-layer FL in [5] to bound ∆w(T ) in three-layer FL:

∆w(T )

1
≤

M∑
m=1

|D(m)|
|D|

∑
n∈C(m)

|Dn|
|D(m)|

an∆wn(T, τe, τc − 1)

2
≤

M∑
m=1

|D(m)|
|D|

∑
n∈C(m)

|Dn|
|D(m)|

(
aτcn ∆w(m)(T, τe − 1)

+ η

S∑
s=1

‖pn(y = s)− p(y = s)‖·

τc−1∑
j=0

ajngmax(w∗(T, τe, τc − 1− j))
)

3
≤

M∑
m=1

|D(m)|
|D|

∑
n∈C(m)

|Dn|
|D(m)|

(
aτcτen ∆w(T − 1)

+ η

S∑
s=1

‖pn(y = s)− p(y = s)‖· (6)

τe−1∑
p=0

τc−1∑
j=0

apτc+jn gmax(w∗(T, τe − p, τc − 1− j))
)

4
≤

M∑
m=1

|D(m)|
|D|

∑
n∈C(m)

|Dn|
|D(m)|

(
aTτcτen ∆w(0)

+ η

S∑
s=1

‖pn(y = s)− p(y = s)‖·

T−1∑
q=0

τe−1∑
p=0

τc−1∑
j=0

aqτeτc+pτc+jn ·

gmax(w∗(T − q, τe − p, τc − 1− j))
)
,

where ∆wn(t, te, tc) := ‖wn(t, te, tc) − w∗(t, te, tc)‖,
∆w(m)(t, te) := ‖w(m)(t, te) − w∗(t, te, τc)‖,
an = 1 + η

∑S
s=1 pn(y = s)λx|y=s and gmax(w) =

maxSs=1 ‖∇wEx|y=s log fs(x,w)‖.
The fourth inequality in Eq. (6) indicates that even the initial

weights of w and w∗ are the same, their differences will accu-
mulate through training due to

∑S
s=1 ‖pn(y = s)−p(y = s)‖,

the probability distance from the data distribution of each
client to the data distribution of D.

The third inequality shows that two parts amplify ∆w(T ).
One is ∆w(T − 1), the weight difference in the last global



training iteration. The other is
∑S
s=1 ‖pn(y = s)−p(y = s)‖.

However, as
∑S
s=1 ‖pn(y = s) − p(y = s)‖ is fixed and

unknown, we cannot use it to minimize ∆w(T ). Given that
∆w(T − 1) also affects ∆w(T ), one potential direction is to
minimize ∆w(t) in each iteration t.

To minimize ∆w(t), the first and the second inequalities
give some hints. If ∆wn(t, te, tc) and ∆w(m)(t, te) are min-
imized, ∆w(t) can be minimized as well. This explains the
observations in our previous empirical study. The performance
degradation when pruning model weights is because that some
parameters of wn(t, te, tc) and w(m)(t, te) are changed to
zero, which increases ∆wn(t, te, tc) and ∆w(m)(t, te) and
thus results in larger ∆w(t) and ∆w(T ). It also explains
the interesting while counterintuitive observation that pruning
and quantizing model updates could improve global model
performance given non-i.i.d. data.

Suppose that client n prunes its local model updates with
its pruning mask ψn ∈ {0, 1}|wn|, and thus its model weights
aggregated by its edge server m is w̃n(t, te, τc) := ψn �
(wn(t, te, τc) − w(m)(t, te − 1)) + w(m)(t, te − 1). Edge
server m also has its pruning mask ψ(m) ∈ {0, 1}|w(m)|.
Its locally aggregated model that will be aggregated by the
central server becomes w̃(m)(t, τe) := ψ(m) � (w(m)(t, τe)−
w(t − 1)) + w(t − 1). If in each global training itera-
tion t, ‖w̃n(t, te, τc) − w∗(t, te, τc)‖ < ∆wn(t, te, τc) and
‖w̃(m)(t, τe) − w∗(t, τe, τc)‖ < ∆w(m)(t, τe), ∆w(t) will
be decreased, and it will improve the trained global model
w(T ). Hence, by properly adjusting masks ψ(m) and ψn,
∀m ∈ [M ],∀n ∈ C(m), through the training process, prun-
ing can increase global model accuracy along with reducing
communication overhead. Similarly, if quantization can further
decrease ‖w̃n(t, te, τc) − w∗(t, te, τc)‖ and ‖w̃(m)(t, τe) −
w∗(t, τe, τc)‖, the training performance can be improved even
more. This insight motivates us to propose FEDSAW, a new
framework for cross-silo FL with three layers.

V. FEDSAW: DESIGN AND WORKFLOW

This section presents our proposed framework, FEDSAW,
in detail. As our empirical and theoretical studies illustrate
the promising potential of utilizing pruning and quantization
to reduce communication overhead with possible improvement
on model performance, we first present the design of FEDSAW
that can improve both the communication efficiency and global
model accuracy, and then show its workflow.

A. Design

Our analysis in the last section reveals that by minimizing
‖w̃(m)(t, τe)−w∗(t, τe, τc)‖ in each global training iteration
t and ‖w̃n(t, te, τc)−w∗(t, te, τc)‖ in each local aggregation
round te, pruning can offset the accuracy reduction on the
global model due to training with non-i.i.d. data. However,
as clients’ data are not centrally stored for training w∗,
w∗(t, te, tc) is unknown. A feasible workaround is to use w(t)
and w(m)(t, te) to substitute w∗(t, te, tc), and accordingly
change the objective to minimizing ‖w̃(m)(t, τe)−w(t)‖ and
‖w̃n(t, te, τc)−w(m)(t, te)‖. The intention is that decreasing

the weight difference between every local model and the
model aggregated with it could potentially decrease this weight
difference after the next aggregation.

Hence, for edge server m, if ‖w̃(m)(t, τe)−w(t)‖ is large,
its pruning mask ψ(m)(t + 1) in the next global training
iteration should contain more zeros, i.e., with a higher pruning
amount ρ(m)(t+1), so that ‖w̃(m)(t+1, τe)−w(t+1)‖ would
likely decrease and in turn leads to smaller ∆w(T ).

Similarly, it is intuitive to adjust the pruning amount ρn of
client n to minimize ‖w̃n(t, te, τc)−w(m)(t, te− 1)‖ in each
round of its edge server’s local aggregation as well. And the
larger the weight difference ‖w̃n(t, te, τc)−w(m)(t, te− 1)‖,
the higher the pruning amount ρn. However, it is common
in the real world that there are a massive number of clients.
And due to unstable and limited network communication, it
is very likely that a client is able to participate at most once.
That is, even if we compute ρn to generate ψn for client n
who participated in the last round of aggregation, it may not
conduct local training again. Thus, we use ρ(m) as the pruning
amount of all the clients of edge server m.

Therefore, we design FEDSAW to adaptively tune the prun-
ing amount of each edge server and its clients with the rule
that edge server m with larger ‖w̃(m)(t, τe) − w(t)‖ should
have higher pruning amount.

To further decrease ‖w̃n(t, te, τc) − w(m)(t, te − 1)‖ and
‖w̃(m)(t, τe) − w(t)‖, we quantize updates of edge servers
and their clients with large ‖w̃(m)(t, τe)−w(t)‖ after pruning
these updates and before sending them out.

With extensive empirical study, we find that at the end
of the t-th global training iteration, setting ρ(m)(t + 1), the
pruning amount of edge server m and its clients in the next
global training iteration, as below could improve the training
performance:

ρ(m)(t+ 1) = sigmoid

(
∆w̃(m)(t, τe)−$

$

)
, (7)

where ∆w̃(m)(t, τe) := ‖w̃(m)(t, τe) − w(t)‖ and $ is the
median of {∆w̃(m)(t, τe)}. In addition, quantizing pruned
updates of edge server m and its clients in the next global
training iteration if ∆w̃(m)(t, τe) > $ can enhance the
training performance.

To generate pruning mask ψ(m) and ψn, ∀n ∈ C(m) with
the pruning amount ρ(m) computed by Eq. (7), one option is to
use L1-norm unstructured pruning, which shows its superiority
in Section III-B. Also, a recent work [19] indicates that
random pruning can speed up the sparse training of modern
neural networks. As it is hard to theoretically analyze which
parameters are truly important to the model performance so
that they should not be zeroed out, randomly zeroing out
parameters might be better than doing so with certain pruning
criteria. To explore if random pruning is also powerful in three-
layer cross-silo FL, we implement it in FEDSAW and conduct
an empirical study to compare it with L1-norm pruning.

B. Workflow
Below is the workflow of FEDSAW. Since every edge

server follows the same workflow in parallel, here we only



demonstrate the steps conducted by edge server m, its clients,
and the central server in the t-th global training iteration.
Repeat the following Step 1 to Step 6 until the global model
converges or reaches a target accuracy.

Step 1: The central server sends the current global model
w(t − 1), pruning amount ρ(m)(t), and whether quantization
should be conducted to edge server m. In the first global train-
ing iteration, w(0) is randomly generated and ρ(m)(1) = ρ.

Step 2: Edge server m uses this model w(t−1) as its initial
aggregated model w(m)(t, 0) at the beginning of its first round
of local aggregation. For the other te-th round, edge server m
sends its locally aggregated model w(m)(t, te−1) and pruning
amount ρ(m)(t) to its clients, and also notifies them if they
should quantize their pruned updates.

Step 3: After receiving w(m)(t, te−1) from its edge server,
client n, ∀n ∈ C(m), conducts local SGD in parallel to
generate its local model wn(t, te, τc). After pruning updates
wn(t, te, τc) − w(m)(t, te − 1) with the pruning amount of
ρ(m)(t) to compute w̃n(t, te, τc) and quantizing it if required,
client n sends it to its edge server m.

Step 4: Edge server m decompresses w̃n(t, te, τc) upon
receiving it. After receiving pruned updates from all its clients,
edge server m aggregates them to generate its new local model
w(m)(t, te). Steps 2 to 4 are repeated until edge server m
finishes τe rounds of local aggregation.

Step 5: After finishing its τe-th round of local aggregation,
edge server m prunes w(m)(t, τe)−w(t−1) with the pruning
amount of ρ(m)(t) to generate w̃(m)(t, τe), which will be
quantized if required, and sent to the central server.

Step 6: Once receiving compressed aggregated models
from all the edge servers, the central server decompresses
and aggregates them to generate w(t), computes ρ(m)(t+ 1)
with Eq. (7), and determines whether quantization should be
conducted in the next round for each edge server m.

VI. EVALUATION

We have implemented FEDSAW in PLATO and evaluated
it with six widely used datasets and three popular models in
the machine learning field, the MNIST, FashionMNIST, EMNIST,
and FEMNIST datasets with the LeNet-5 model, the CIFAR-10
dataset with the ResNet-18 model, and the CINIC-10 dataset
with the VGG-16 model.

Experimental settings are the same as that in our previous
experimental study presented in Section III. For tasks of
training the LeNet-5 model with MNIST and FashionMNIST
datasets, the parameter settings are the same as training the
LeNet-5 model with EMNIST dataset shown in Table I.

We first investigate whether the L1-norm pruning or random
pruning is better for FEDSAW to improve communication
efficiency in cross-silo FL. After deciding the suitable strategy
to generate the pruning mask, we apply it and compare
FEDSAW with Sub-FedAvg [14], a state-of-the-art framework
for improving the communication efficiency of FL. It iter-
atively prunes the parameters and channels of each client’s
local model during its local training. Since Sub-FedAvg was
designed for two-layer FL, for a fair comparison, we let

edge servers prune their aggregated models after each local
aggregation by following the same pruning strategy used by
clients in our experiments. We use 0.4 as the initial pruning
amount of Sub-FedAvg and FEDSAW.

A. FEDSAW: L1-Norm Pruning or Random Pruning

As random pruning is also a popular pruning strategy and a
recent work [19] claimed its practicability in machine learning,
we testify if it is a better fit to FEDSAW than the L1-
norm pruning, which shows its effectiveness in our previous
empirical study in Section III-B.
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Fig. 3: Comparing the performance of FEDSAW with L1-norm
pruning and with random pruning.

Unfortunately, the performance of FEDSAW with random
pruning is not satisfactory. In all our experiments, L1-norm
pruning always outperformed random pruning. Fig. 3 shows
the global model accuracy as training time elapsed through
training with CIFAR-10 and CINIC-10 datasets as examples.

These results can be explained with the design rule of
FEDSAW. Higher pruning amounts are applied to larger local
updates to make their magnitudes closer to 0, as our analysis
in Section IV indicates that these local updates would degrade
global model performance. However, there are chances that
some parameters in these local updates could actually improve
the global model performance. Hence, to maintain the possible
contribution of these updates to the global model, zeroing out
parameters with smaller L1-norm values but keeping those
with larger L1-norm values unchanged should be better than
randomly selecting parameters to zero out. Therefore, L1-norm
pruning is a better choice for FEDSAW than random pruning.

B. Comparing FEDSAW with the State-of-the-Art

To further evaluate the performance of FEDSAW with L1-
norm pruning and quantization, we compare it with Sub-
FedAvg and no pruning and no quantization as the baseline.
Fig. 4 demonstrates global training accuracy with the elapsed
wall-clock time through training in the six tasks. To better
evaluate pruning and quantization separately, the dotted purple
lines with star markers are for FEDSAW with adaptive pruning
only, while the dashed red lines with thin diamond markers
are for FEDSAW with both adaptive pruning and quantization.

Generally, even only with adaptive pruning, FEDSAW re-
quired less elapsed training time than the baseline and Sub-
FedAvg to reach the same accuracy. With quantization, FED-
SAW saved even more time.
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Fig. 4: Performance comparison: FEDSAW vs. its competitors.

Another observation is that the performance of Sub-FedAvg
is not satisfactory for three-layer cross-silo FL. In the tasks
of training with the CIFAR-10 and CINIC-10 datasets, Sub-
FedAvg only slightly outperformed the baseline. While in the
other four tasks, its performance was worse than the baseline.

A possible explanation of the unsatisfactory performance of
Sub-FedAvg is that it was designed for traditional two-layer
FL. Given that we already made the necessary adjustment
to use it under our three-layer structure, its performance
degradation shows the difference between two-layer and three-
layer FL and the difficulty to improve performance under this
practical while rarely studied three-layer structure.

Table IV and Table V list all the numerical results regarding
elapsed wall-clock training time and communication overhead,
respectively. Numbers in bracelets are the percentages of re-
duction in elapsed wall-clock training time and communication
overhead for the global model to reach the target accuracy
compared with the baseline. In three-layer cross-silo FL, Sub-
FedAvg failed to have better performance than baseline in
half of the six evaluated tasks. While FEDSAW consistently
improved the performance of baseline even with adaptive
pruning only. With quantization, FEDSAW always had the best
performance among the four evaluated mechanisms. Especially
in the task of training the VGG-16 model with the CINIC-10
dataset, FEDSAW reduced 78.82% training time and 83.42%
communication overhead compared to the baseline. When

training the LeNet-5 model with the MNIST dataset, FEDSAW
with quantization reduced 86.67% training time and 91.53%
communication overhead compared to Sub-FedAvg.

VII. RELATED WORK

Since communication is a key bottleneck in FL, various
communication-efficient methods have been proposed. A com-
mon direction is to use compression techniques to reduce the
size of messages communicated in each training iteration [20].
As two of the most common techniques in the literature to
reduce the computational and memory requirements of neural
networks, pruning and quantization have been used in several
works to improve communication efficiency in FL.

With the assumption that the central server knows the chan-
nel state information of all clients, Liu et al., [15] formulate an
optimization problem to compute the optimal pruning amount
to maximize the convergence rate under a given learning rate
budget. In their next work [17], the optimization problem
solves the optimal client selection in addition to the pruning
amount. However, their assumption is not always practical.
The channel state information of each client is hard to know
beforehand and could vary from time to time during training.

To minimize the total training time of FL, PruneFL [13] first
selects one trusted client with high computational capabilities
to start training with a small model. During training, both
the server and clients conduct adaptive pruning. PruneFL
formulates the problem of finding optimal pruning masks as
minimizing an approximated risk reduction divided by an
approximated time of one training iteration. A problem with
this approach is that it is hard to find an optimal client and
approximate the time of each iteration in reality, considering
numerous clients and unstable network connections.

Another FL framework FL-PQSU [16] combines pruning,
weight quantization, and letting clients only upload their
updates when their training loss in this global training iteration
is higher than the previous iteration. The pruning method
it uses is the L1-norm structured pruning with a predefined
pruning amount. All the above-mentioned existing works are
for the traditional two-layer FL, while the three-layer cross-silo
FL we study throughout this paper remains uncharted territory.

VIII. CONCLUDING REMARKS

In this paper, we focus on a rarely studied while practical
three-layer structure of cross-silo FL, where training data are
kept on clients’ sides rather than centrally stored in institutions.
We first implement PLATO, our open-source FL framework,
and explore the effect of using pruning in three-layer cross-
silo FL through empirical study. With the observation that
pruning and quantization can largely improve communica-
tion efficiency with negligibly reducing or even increasing
global model accuracy, we mathematically analyze the training
performance with these two compression techniques. As our
theoretical study indicates that pruning and quantization can
improve the global model performance if compressing updates
with the right amount to offset the weight differences due to
non-i.i.d. local data, we propose a new framework, FEDSAW,



TABLE IV: Elapsed wall-clock training time to reach a target accuracy in different tasks.

Dataset Model Target
Accuracy

Elapsed Training Time (Hours)
Baseline Sub-FedAvg FEDSAW FEDSAW + Quantization

MNIST LeNet-5 98% 0.16 0.75 (-363.44%) 0.13 (17.83%) 0.10 (40.87%)

FashionMNIST LeNet-5 86% 0.65 0.52 (19.23%) 0.38 (41.87%) 0.33 (48.47%)

EMNIST LeNet-5 77% 0.42 0.43 (-2.92%) 0.26 (37.97%) 0.24 (42.62%)

FEMNIST LeNet-5 75% 1.76 2.02 (-14.56%) 1.65 (6.64%) 1.46 (17.06%)

CIFAR-10 ResNet-18 85% 2.27 2.16 (4.91%) 1.38 (39.30%) 1.24 (45.39%)

CINIC-10 VGG-16 57% 3.81 1.56 (59.13%) 1.20 (68.48%) 0.81 (78.82%)

TABLE V: Communication overhead to reach a target accuracy in different tasks.

Dataset Model Target
Accuracy

Communication Overhead (GB)
Baseline Sub-FedAvg FEDSAW FEDSAW + Quantization

MNIST LeNet-5 98% 0.39 1.77 (-357.13%) 0.32 (16.25%) 0.15 (60.13%)

FashionMNIST LeNet-5 86% 1.55 0.83 (46.03%) 0.91 (40.88%) 0.81 (47.55%)

EMNIST LeNet-5 77% 1.01 1.05 (-3.69%) 0.65 (35.84%) 0.40 (60.90%)

FEMNIST LeNet-5 75% 4.34 4.79 (-10.26%) 4.00 (7.93%) 2.33 (46.33%)

CIFAR-10 ResNet-18 85% 53.37 51.31 (3.87%) 34.09 (36.12%) 20.58 (61.44%)

CINIC-10 VGG-16 57% 98.43 40.55 (58.81%) 33.71 (65.75%) 16.32 (83.42%)

to improve both communication efficiency and global model
performance in cross-silo FL with three layers by adaptively
tuning the pruning amount of each institution and its clients
and determining whether to quantize their pruned updates. Our
experimental results demonstrate the effectiveness of FEDSAW
under various training tasks. It consistently and significantly
outperformed its competitors in terms of reducing elapsed
wall-clock training time and communication overhead.
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