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Abstract—Federated learning allows edge devices to collaboratively
train a global model without sharing their local private data. Yet, with
limited network bandwidth at the edge, communication often becomes
a severe bottleneck. In this paper, we find that it is unnecessary to
always synchronize the full model in the entire training process, because
many parameters already become mature (i.e., stable) prior to model
convergence, and can thus be excluded from later synchronizations. This
allows us to reduce the communication overhead without compromising
the model accuracy. However, challenges are that the local parameters
excluded from global synchronization may diverge on different clients, and
meanwhile some parameters may stabilize only temporally. To address
these challenges, we propose a novel scheme called Adaptive Parameter
Freezing (APF), which fixes (freezes) the non-synchronized stable
parameters in intermittent periods. Specifically, the freezing periods
are tentatively adjusted in an additively-increase and multiplicatively-
decrease manner—depending on whether the previously-frozen param-
eters remain stable in subsequent iterations. We also extend APF into
APF# and APF++, which freeze parameters in a more aggressive manner
to achieve larger performance benefit for large complex models. We
implemented APF and its variants as Python modules with PyTorch, and
extensive experiments show that APF can reduce data transfer amount
by over 60%.

1 INTRODUCTION

Federated learning (FL) [32], [40] emerges as a promising
paradigm that allows edge clients (e.g., mobile and IoT
devices) to collaboratively train a model without sharing
their local private data. In FL, there is a central server
maintaining the global model, and edge devices synchronize
their model updates in communication rounds. However,
the Internet connections have limited bandwidth [1], which
makes the parameter synchronization between the edge and
server an inherent bottleneck that severely prolongs the
training process.
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A rich body of research works have been proposed to
reduce the communication amount for distributed model
training. For example, some works propose to quantize the
model updates into fewer bits [5], [32], [49], and some
other works propose to sparsify local updates by filtering
out certain values [20], [27], [53], [55]. Nonetheless, those
works assume that all the model parameters should be
synchronized indiscriminately in all the communication
rounds, which we find, however, is unnecessary. In our
testbed measurements, many parameters become “mature”
(i.e., stable) long before the model convergence; after these
parameters reach their optimal values, their subsequent
updates are random oscillations with no substantial changes,
and can be excluded without harming the model accuracy.

Therefore, an intuitive question we want to explore is,
can we reduce FL communication amount by no longer
synchronizing those stabilized parameters? We first propose
a metric called effective perturbation to identify the stabilized
parameters—by quantifying how closely the consecutive
updates of a parameter follow an oscillating pattern. A key
challenge, then, is to treat the non-synchronized parameters
properly—with preserved model convergence validity.

Delving into that regard, we empirically find that some
strawman solutions however do not work well. A straight-
forward method—having the stabilized parameters updated
only locally—fails to guarantee convergence, because the
local updates on different clients may diverge, causing
model inconsistency. Another method that permanently fixes
(i.e., freezes) the stabilized parameters can ensure model
consistency, but it still hurts the model convergence accuracy.
This is because some parameters may stabilize only temporally
during the training process; after being frozen prematurely,
they are unable to reach the true optima.

Based on the above explorations, we design a novel
mechanism, Adaptive Parameter Freezing (APF), with the
objective of reducing communication volume while guar-
anteeing convergence validity. The key design philosophy is
to tentatively freeze the stabilized parameters as guided by
a feed-back control loop. Under APF, each stable parameter
is frozen for a certain period and then unfrozen for regular
updating. The length of such freezing period is not fixed but
adjusted adaptively—additively increased or multiplicatively
decreased based on whether that parameter is still stable after
being updating regularly. This way, APF enables temporarily-
stable parameters to resume training in a timely manner,
while keeping the converged parameters unsynchronized for
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most of the time. Our theoretical analysis further confirms
that APF can guarantee convergence validity for general
non-convex models.

Furthermore, for large models that are over-
parameterized [43], [65], we have empirically observed
that some parameters may not be stable even after model
convergence (due to irregular landscapes). This may largely
limit the communication compression benefit of APF.
Considering the statistical redundancy of those complex
neural network models, we further propose two APF
extensions, APF# and APF++, which can freeze parameters
in a more aggressive manner. The former (APF#) forces
unstable parameters to be frozen for one round with a
fixed probability (similar to Dropout [24], [33], [52]), and
the latter (APF++) lets that freezing probability and length
gradually increase during training, so as to exploit statistical
redundancy for more communication-reduction benefits.

We have implemented APF (including the extensions)
as a pluggable Python module named APF_Manager, atop
the PyTorch framework. The module takes over the vanilla
updates of edge clients and communicates only the non-
frozen components with the server. Meanwhile, it also
maintains the freezing period of each parameter based on the
metric of effective perturbation. Our evaluation on Amazon
EC2 platform demonstrates that, APF can reduce the overall
transmission volume by over 60%—with comparable or even-
better generalization performance than vanilla FL. Mean-
while, it outperforms a series of competing communication
compression methods in the literature, with good hyper-
parameter robustness and low overheads.

Our contributions can be summarized as follows:

• To our knowledge, we are the first that discover the
opportunity to reduce the communication volume of
FL by not synchronizing the stabilized parameters.

• After exploring candidate solutions, we propose APF,
which attains large communication compression with
convergence validity preserved, as supported by both
empirical observations and theoretical analysis.

• We further propose APF# and APF++ that can attain
even larger communication compression benefit with
more aggressive parameter freezing methods.

• We have implemented APF in PyTorch, and verified
its effectiveness with extensive testbed experiments.

2 BACKGROUND

2.1 Federated Learning: the Basics
Deep learning techniques based on neural network mod-
els have tremendously improved the state-of-the-art per-
formance of many modern applications, including image
classification [23], [33] and language processing [15], [18].
However, in many real-world scenarios, the training samples
are privacy-sensitive and dispersed on distributed edge
clients, like cellphones and IoT equipments. To train models
without centralizing such private data, an increasingly
popular technique is federated learning (FL) [8], [32], [40]. In
FL, there is a central server that maintains the global model,
and clients periodically communicate with the server to
pull the latest model parameters and, after local refinements
for multiple iterations, push back the updates for global
aggregation.

However, communication between clients and the FL
server has become a severe performance bottleneck [7], [32],
[40]. As an enabling technique that supports apps like Google
Gboard with global user [63], FL entails that edge clients need
to communicate with the server through the Internet, where
the average bandwidth is less than 10Mbps globally [1]. In
our testbed measurements (see §7.1 for detailed setup), when
training LeNet-5 (a classical convolutional neural network
for image classification [34]) or ResNet-18 under a FL setup
with 50 clients, we find that over half of the training time is
spent on parameter communication. Therefore, it is of great
significance to reduce the communication volume in FL.

2.2 Prior Arts and Their Limitations

To reduce the total transmission volume in distributed
machine learning, there have been a bewildering array of
research works [5], [12], [16], [20], [22], [25], [27], [29], [32],
[46], [49], [50], [53], [67]. Among them the two most typical
methodologies are quantization and sparsification.

Quantization [5], [49], [59] works by using lower bits
to represent the transmitted gradients which are originally
represented by 32 bits. For example, Seide et al. [49] proposed
to aggressively quantize the gradients into only 1 bit, and
achieved a 10× communication speedup. A later work,
QSGD [5], sought to balance the trade-off between accuracy
and gradient compressing ratio, and provided a family of
quantization schemes. Wen et al. [59] developed another com-
munication compression scheme named TernGrad, which
quantizes gradients into three levels {-1, 0, 1}.

Sparsification aims to reduce the number of elements to
transmit in each iteration—by selecting only a “significant”
portion of the original content. Compared with quantization,
sparsification has the potential to achieve a much higher
compression level. In designing sparsification solutions, a
key challenge is how to identify the significant gradient
components. For example, Storm [53] and Gaia [27] proposed
to only send gradients whose absolute or relative values were
larger than a given threshold. Dryden et al. [20] chose to
separately select a fraction of positive and negative gradients
for transmission—with the objective to meet a given com-
pression ratio while preserving the expected gradient values.
Additionally, CMFL [55] sought to report a portion of the
initial gradients that were consistent enough with the global
one in the positive/negative directions. Those methods have
proven effective in reducing the communication amount.

Limitation of existing practice. However, the above spar-
sification methods are still far from optimal, because there
exists a remarkable deficiency in their criteria to identify
the so-called “significant” gradients. In those works, the
significant gradients are identified purely with instantaneous
information (e.g., by comparing the values or directions of
different gradients within each individual round), but are
blind to high-level model convergence status. In fact, users
primarily care about model convergence rather than the
exact parameter values; sometimes (as shown later in §3)
the updates of certain parameters are not needed by the
long-term model convergence—regardless of their gradient
magnitude. In that case, we can try eliminate their gradient
synchronization to further reduce overall communication
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volume, even though their gradients are “significant” ac-
cording to traditional criteria (e.g., in aspects of quantity
or consistency). Obviously, existing sparsification methods
cannot leverage such opportunity for better performance.

In this work, we ask a bold question: Is it necessary to
keep updating all the parameters during the entire model
training process? Intuitively, if there exist some parameters
that no longer require being updated, we can fundamentally
eliminate the communication cost of synchronizing them
later. Next, we will explore the feasibility of that idea with
both theoretical analysis and testbed measurements.

3 MOTIVATING EXPLORATION

In this section, we focus on parameter evolutions in model
training, identifying an intriguing parameter stabilizing
pattern which can be exploited for communication reduction.
We first confirm its existence with theoretical analysis and
empirical observations, and then conduct a series of in-depth
study on its microscopic characteristics.

3.1 Parameter Evolution during Training
Given a neural network model, the objective of model train-
ing is to find the optimal parameters x? that can minimize
the global loss function, F (x). A common algorithm to find
x? is stochastic gradient descent (SGD) [34], which works in an
iterative manner. In iteration k, the model parameter xk is
updated with a gradient gξk(x) calculated from a random
sample batch ξk, i.e., xk+1 = xk − ηgξk(xk).

In this work, we are curious on how the sequence of
{x1,x2, ...,xk, ...} evolves during the model training process.
Our analysis is based on two common assumptions: strong
convexity and bounded gradients.

Assumption 1. (Strong Convexity.) The global loss function
F (x) is µ-strongly convex, i.e.,

F (y) ≥ F (x) +∇F (x)T (y − x) +
µ

2
‖y − x‖2.

An equivalent form of µ−strongly convexity is

(∇F (x)−∇F (y))T (x− y) ≥ µ‖x− y‖2.

Assumption 2. (Bounded Gradient.) The stochastic gradient
calculated from a mini-batch ξ is bounded as E‖gξ(x)‖2 ≤ σ2.

Based on the above assumptions, we can derive the
following theorem1:

Theorem 1. Suppose F (x) is µ-strongly convex, σ2 is the upper
bound of the variance of ‖∇F (x)‖2, then there exist two constants
A = 1− 2µη and B = ησ2

2µ , such that

E(‖xk − x?‖2) ≤ Ak‖x0 − x?‖2 +B.

Proof.

‖xk+1 − x?‖2 = ‖xk − x? + xk+1 − xk‖2

= ‖xk − x? − ηgξk(xk)‖2

= ‖xk−x?‖2−2η〈xk−x?,gξk(xk)〉+η2‖gξk(xk)‖2.

1. This is not our key contribution and similar theorems have already
been derived in existing works [11], [41]. We put it here primarily for
clarity; besides, our theorem form is more neat than existing ones.

Taking expectation conditioned on xk we can obtain:

Exk
(‖xk+1 −x?‖2) = ‖xk − x?‖2 − 2η〈xk−x?,∇F (xk)〉

+ η2Exk
(‖gξk(xk)‖2).

Given that F (x) is µ−strongly convex, we have

〈∇F (xk),xk − x?〉 = 〈∇F (xk)−∇F (x?),xk − x?〉
≥ µ‖xk − x?‖2.

Applying total expectation, we can obtain

E(‖xk+1−x?‖2)=E‖xk − x?‖2 − 2η〈E(xk − x?),∇F (xk)〉
+ η2E(‖gξk(xk)‖2)

≤ (1− 2µη)E‖xk − x?‖2 + η2σ2.

Recursively applying the above and summing up the
resulting geometric series gives

E(‖xk−x?‖2)≤(1−2µη)k‖x0 − x?‖2+
k−1∑
j=0

(1− 2µη)jη2σ2

≤ (1− 2µη)k‖x0 − x?‖2 +
ησ2

2µ
.

This completes the proof.

As implied by Theorem 1, the training gap is determined
by two components: a exponentially-decaying “bias” term
related to parameter initialization, and a stable “noise” term
related to the gradient variance bound which gradually
dominates as training proceeds. This is consistent with
previous observations that the model parameters first go
through a transient phase and then a stationary phase [42],
[66]: In the transient phase, x approaches x? exponentially
fast in the number of iterations, and in the stationary phase,
x oscillates around x?. Therefore, model parameters should
change remarkably in the beginning and then gradually
stabilize. We further confirm that with testbed measurements.

Empirical observations. We train LeNet-5 [34] locally on the
CIFAR-10 dataset with a batch size of 100, and Fig. 1 shows
the values of two randomly sampled scalar parameters after
each epoch, along with the test accuracy2 for reference. In
the figure, the two parameters change significantly in the
beginning, accompanied by a rapid rise in the test accuracy;
then, as the accuracy curve plateaus, they gradually stabilize
after around 200 and 300 epochs, respectively.

We note that those stabilized parameters provision a
promising opportunity to mitigate FL communication bot-
tleneck. In current FL practices [32], [40], parameters are
still updated regularly even after they stabilize. Although
the updates of stabilized parameters are mostly oscillatory
random noises, transmitting them still consumes the same
communication bandwidth as before. Such a communica-
tion cost is in fact unnecessary, because machine learning
algorithms are in general resilient against small parameter
perturbations [17], [21], [27]. This can also be confirmed by
the success of recent techniques like Dropout [?], [24], [52]
and Stochastic Depth [28]. Thus, to reduce communication
cost in FL, as an intuitive method, we can try avoid synchro-
nizing such stabilized parameters.

2. For clarity, we present the best-ever accuracy instead of instantaneous
accuracy (which fluctuates drastically) in this paper.
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Fig. 1: Evolution of two randomly
selected parameters during LeNet-5
training (with the test accuracy for
reference.)
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Fig. 2: Variation of the average effec-
tive perturbation of all the parameters
during the LeNet-5 training process.
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Fig. 3: Average epoch number where pa-
rameters in different layers become stable
(error bars show the 5th/95th percentiles).

Yet, how to identify the so-called stable parameters? And
how common is the resource wastage caused by transmitting
their oscillating gradient? We next quantitatively analyze
the parameter stability characteristics over the entire model
training process through testbed measurements.

3.2 Deep Dive Analysis on Parameter Stability
In this subsection, we propose a metric to quantify the
parameter stability level, and dive deep into the inner

3.2.1 Identifying Stable Parameters
To see if the parameter variation pattern in Fig. 1 generally
holds for other parameters, we conduct a statistical analysis
of all the LeNet-5 parameters over the entire training process.

Regarding gradient statistics, several metrics have already
been proposed in the literature to help setup certain training
hyper-parameters. For example, to instruct the batch size
setup, Qiao et. al [47] and McCandlish et. al [39] proposed
a metric called Gradient Noise Scale (GNS), which cal-
culates the consistent level among gradients of different
samples. Meanwhile, to instruct the learning rate setup,
Johnson et. al [30] proposed to calculate the Gradient
Variance (GR) metric, and Kazuki et. al further resorted
to a second-order metric [44]. Nonetheless, those metrics
do not meet our demand in this paper: We care not about
the gradient variance or gradient noise scale, but on the
parameter stability level, i.e., to what extent the gradients
from different iterations oscillate around zero. To that end,
we devise a new gradient metric called effective perturbation.

Effective perturbation is defined over an observation
window containing a certain amount of consecutive model
updates in the recent past. Formally, let uk = xk−xk−1

represent parameter update in iteration3 k, and S be the
number of recent iterations the observation window contains,
then Pk—the effective perturbation at iteration k—can be
defined as:

Pk =
‖
∑k
i=k−S+1 ui‖∑k

i=k−S+1 ‖ui‖
. (1)

3. While an update here corresponds to one iteration for SGD analysis,
for FL setups it is naturally extended to be an accumulated update over
an entire round. A parameter judged stable at per-iteration granularity
would remain so at per-round granularity. For simplicity, in later parts
we skip the intra-round microscopic details, and treat each FL round as
a SGD iteration when analyzing parameter trajectories.

Clearly, Pk represents how a parameter’s trajectory
follows the zigzagging pattern, i.e., how the consecutive
updates counteract with each other. The more stable a
parameter is, the more conflicting its consecutive updates are,
and the smaller its effective perturbation is. If all the model
updates are of the same direction, Pk would be 1; if any two
consecutive model updates well counteract each other, then
Pk would be 0. Thus, with a small threshold on effective
perturbation, we can identify those stabilized parameters
effectively.

We then look at the average effective perturbation of
all the parameters during the LeNet-5 training process, as
depicted in Fig. 2, where the observation window W spans
one epoch (i.e., 500 updates). We observe that the average
effective perturbation decays rapidly at first and then quite
slowly after the model converges at around epoch-200 (see
the accuracy result in Fig. 1), suggesting that most parameters
gradually stabilize before the model converges.

3.2.2 Manipulating Granularity: Tensor or Scalar?

It is well-known that a neural network model is a list of
tensors (e.g., weight tensor, bias tensor), where each tensor
corresponds to a multi-dimensional array of scalars. When
compressing communication by skipping synchronizing the
stable parameters, we have two choices regarding the param-
eter manipulation granularity: tensor-granularity and scalar-
granularity. The former is more concise by synchronizing
scalars of a tensor in an all-or-nothing manner, yet it assumes
that all the scalars in a tensor follow the same stability pattern.
To find out the appropriate manipulating granularity, we
resort to testbed measurements that compare the stability
behaviors of different parameters in a model.

As in Fig. 3, we group all scalars into different buckets
according to the tensor they belong to, and calculate the
average epoch number at which the scalars in that tensor
bucket become stable. In LeNet-5 there are 10 tensors, e.g.,
conv1-w—the weight tensor in the first convolutional layer,
and fc2-b—the bias tensor in the second fully connected
layer. Here a scalar is deemed stable when its effective
perturbation drops below 0.01, and the error bars in Fig. 3
represent the 5th and 95th percentiles.

As indicated by Fig. 3, different tensors exhibit dif-
ferent stability trends; meanwhile, there also exist large
gaps between the 5th and 95th error bars of each tensor,
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Fig. 4: When training LeNet-5 under a non-IID setup with
two clients, the local values of two randomly selected pa-
rameters (stabilizing at around round-300 and then updated
purely locally) would diverge on different clients.

implying that parameters within the same layer may exhibit
vastly different stabilization characteristics. This is in fact
reasonable, because some features of the input samples may
be easier to learn than the rest, and thus in a neural network
layer, some scalar parameters move faster in their optimal
dimensions and would converge faster [66]. This is essentially
a property called non-uniform convergence [27].

Therefore, the granularity for parameter synchronization
control needs to be individual scalar instead of the entire
tensor. That is, let xjk and ujk respectively represent the j-th
scalar in the flattened parameter4 xk and flattened update
uk, then given a stability threshold γ, a scalar xjk would
judged as stable if

Pjk =
|
∑k
i=k−S+1 u

j
i |∑k

i=k−S+1 |u
j
i |
< γ. (2)

Note that our objective in this work is to reduce the
communication volume for FL without compromising the
accuracy performance. In the next section (§4), we will
explore how to treat those stabilized parameter so as to har-
vest communication compression with accuracy preserved,
whose applicability is further extended in §5. Later in §6, we
will discuss how to integrate that solution into realistic FL
systems in an efficient manner, and finally we will evaluate
its performance in §7.

4 ADAPTIVE PARAMETER FREEZING

In this section, we present a novel mechanism called Adap-
tive Parameter Freezing (APF), which can reduce the com-
munication cost in FL process with the model convergence
validity preserved. We first explore some strawman solutions,
with the lessons learned we then develop our APF solution.

4.1 Lessons Learned from Strawman Solutions
Given the stabilized parameters identified with the effective
perturbation metric, how to exploit them so that we can reap
communication reduction without compromising model con-
vergence? We find that some intuitive approaches however

4. For simplicity, in the remaining part of this paper, we use a vector
symbol x to represent all the parameters in a model. In implementation,
that vector can be obtained by first expanding all the model tensors
into a vector (with the PyTorch API Tensor.view(-1)) and then
concatenating those vectors together.

do exhibit some fatal deficiencies, from which we can learn
the key principles that a valid solution must follow.

Intuitive solution 1—partial synchronization. To exploit the
stabilized parameters for communication compression, an
intuitive idea is to exclude them from synchronization (but
still update them locally), and only synchronize the rest of
the model to the central server. We find that such a partial
synchronization method may cause severe accuracy loss.

In typical FL scenarios, the local training data on an edge
client is generated under particular device environment or
user preference. Thus the local data is usually not identically
and independently distributed (i.e., non-IID) across different
clients [7], [32], [40]. This implies that the local loss function
F (x) and the corresponding local optima x? on clients
are usually different [68]. Therefore, a parameter that is
updated only locally would eventually diverge to different
local optima on different clients; such inconsistency of
unsynchronized parameters would deteriorate the model
accuracy.

To confirm this, we train the LeNet-5 model in a dis-
tributed manner with non-IID data. There are two clients
each with 5 distinct classes of the CIFAR-10 dataset, and
stabilized parameters are excluded from later synchroniza-
tion. Fig. 4 shows the local variation of two randomly
selected parameters: Once they are excluded from global
synchronization, their values on different clients would
diverge remarkably. The model accuracy under such a
partial synchronization method is further revealed in Fig. 5:
Compared to full-model synchronization, there is an accuracy
loss of more than 10%. Therefore, the first principle our
design must follow is that, stabilized (i.e., unsynchronized)
parameters must be kept unchanged on each client (Principle-1).

Intuitive solution 2—permanent freezing. Given Principle-1,
another intuitive method is to simply fix the stabilized param-
eters to their current values. Such a permanent freezing method
can naturally prevent parameter divergence. However, when
training LeNet-5 with permanent freezing with two clients,
we find that the accuracy performance as depicted in Fig. 6
is still suboptimal compared to full-model synchronization.

To understand the reasons behind we look into the pa-
rameter evolution process during training. Interestingly, we
find that some parameters stabilize only temporarily. Fig. 7
showcases two such parameters: they start to change again
after a transient stable period. In fact, parameters in neural
network models are not independent of each other. They
may have complex interactions with one another in different
phases of training [52], and this may cause a seemingly-
stabilized parameter to drift away from its current value
(to ultimate optimum). The permanent freezing solution,
however, prevents such parameters from converging to
the true optimum once they are frozen, which eventually
compromises the model accuracy. It is inherently difficult
to distinguish the temporarily stabilized parameters by
devising a better stability metric based on local observations,
since their behavior before drifting is virtually identical to
that of those that truly converge. Hence, as another principle
(Principle-2), any effective solution must handle the possibility of
temporary stabilization.
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Fig. 5: Partial synchronization causes
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4.2 Adaptive Parameter Freezing

Parameter freezing in a periodical manner. To summarize,
we learned two lessons from the previous explorations. First,
to ensure model consistency, we have to freeze the non-
synchronized stable parameters. Second, to ensure that the
frozen parameters can converge to the true optima, we shall
allow them to resume being updated (i.e., be unfrozen) when
necessary.

Therefore, for those stabilized parameters, instead of
freezing them forever, we freeze them only for a certain time
interval, which we call freezing period. Within the freezing
period, the parameter is fixed to its previous value, and
once the freezing period expires, that parameter should be
updated as normal until it stabilizes again. That is, suppose
the parameter xjk is judged as being stable (i.e., Pjk < γ), then
it would be associated with a freezing period of Ljk, such
that xjt+1 = xjt for t ∈ {k, k + 1, ..., k + Ljk − 1}.

A remaining question is, given that there is no complete
knowledge of the model convergence process a priori, when
to unfreeze a frozen parameter? Or how to set the freezing
period once a parameter becomes stable? We next propose a
novel mechanism to control the parameter freezing period.

Control mechanism of parameter freezing period. Since
each parameter has a distinct convergence behavior, our
solution must adapt to each individual parameter instead of
using an identical freezing period for all. There is a clear
trade-off here: If the freezing period is set too large, we
can compress communication significantly, but some should-
be-drifting parameters cannot escape frozen state timely,
which may compromise the model convergence accuracy;
on the other hand, if the freezing period is set too small,
performance benefit from parameter freezing would be quite
limited.

Therefore, we need to adaptively set the freezing period of
each stabilized parameter. For generality we do not assume
any prior knowledge of the model trained, and choose to
adjust parameter freezing period in a tentative manner. In
particular, we shall greedily increase the freezing period
as long as the frozen parameter keeps stable after being
unfrozen, and shall meanwhile react agilely to potential
parameter variation.

To this end, we design a novel control mechanism
called Adaptive Parameter Freezing (APF). APF is inspired
by the classical control mechanism of TCP (Transmission
Control Protocol) in computer networking [6], [10]: It additively

Fig. 8: A flowchart showing the control mechanism of
parameter freeing period in APF. If a frozen parameter-j
keeps stable (i.e., P jk < γ) after its freezing period expires,
its freezing period Lj is increased linearly (e.g., added by 1);
otherwise if that parameter is no longer stable, its freezing
period is decreased multiplicatively (e.g., being halved).

increases the sending rate of a flow upon the receipt of a
data packet in order to better utilize the bandwidth, and
multiplicatively decreases the sending rate when a loss event is
detected, to quickly react to congestion. This simple control
policy has been working extremely robustly as one of the
cornerstones of the Internet.

Similarly, as shown in Fig. 8, under APF the associated
freezing period of each stabilized parameter is also adjusted
in an “additively-increase, multiplicative decrease” manner.
For a stable parameter, its freezing period starts with a small
value (e.g., one round as in our evaluation). When the freez-
ing period expires, the parameter resumes regular training
in the following round, after which we update its effective
perturbation and re-check its stability. If the parameter is still
stable, we additively increase—and otherwise multiplicatively
decrease (e.g. halve)—the duration of its freezing period,
thereby adapting to the dynamics of each parameter. This
way, the converged parameters would stay frozen for most of
the time, whereas the temporally stabilized ones can swiftly
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resume regular synchronization.
To integrate the above algorithm into realistic FL systems,

we create a dedicated Python module called APF_manager.
That APF_manager makes our communication optimization
transparent to clients: It compresses (uncompresses) vanilla
gradients before (after) synchronization based on the pa-
rameter freezing status, and also automatically maintains
the parameter freezing periods based on the algorithm
in Fig. 8. We have also adopted a series of engineering
optimizations to reduce the extra overhead of APF, and
the elaboration of such implementation details is deferred
to §6. Next, we mathematically prove that APF can preserve
model convergence for general models.

4.3 Convergence Analysis
Note that our motivating analysis in §3.1 assumes the models
be convex, which is acceptable for the community [11], [27],
[41], [55]. Yet, we admit that deep neural networks are
essentially non-convex. In this part we prove that APF can
ensure convergence validity even for non-convex models.
We first state the smoothness assumption.

Assumption 3. (β-smoothness) The global loss function F (x)
is β-smooth, i.e.,

F (y) ≤ F (x) +∇F (x)T (y − x) +
β

2
‖y − x‖2.

Inspired by the perturbed iterate framework of [38], we
define a virtual sequence {x̃k} based on the true sequence
{xk} in the following way:

x̃0 := x0, x̃k+1 := x̃k − ηt∇F (xk). (3)

Our analysis is based on the following assumption which
bounds the cumulative updates of a frozen parameter if
otherwise refined regularly without APF.

Assumption 4. (Parameter Gap incurred by Freezing.)
Suppose xjk is judged as being stable (i.e., P(S)

k,j < γ) and
associated with a freezing period Ljk under APF, then under
Assumption 2 (let E|uj | ≤ σj be the bound of the j-th update,
where

∑
j (σj)2 = σ2), there exists a constant ν such that

∀l ∈ 1, 2, ..., Ljk,

E|
l∑

l′=0

ujk+l′ | ≤ νγηkσ
j . (4)

Justification of Assumption 4. Admittedly, given the stochas-
tic nature of the model training process, there is no de-
terministic knowledge on the virtual behavior of a frozen
parameter in a “parallel world” without freezing. To handle
this challenge, given the adaptive monitoring functionality
of APF, we faithfully assume that the expected behavior of a
parameter within the freezing period resembles that within
the previous observation window, i.e., eq. (2) also hold for
the excluded updates {ujk,u

j
k+1, ...,u

j

k+Lj
k−1
}. That is,

E|
Lj

k−1∑
l′=0

ujk+l′ | = P
j
k

Lj
k−1∑
l′=0

|ujk+l′ | ≤ γL
j
kηkσ

j . (5)

Further, in APF the freezing period Ljk is not set arbitrarily
as an independent constant, but by adapting to the model
landscape (Ljk is increased only when the previous stability

trend persists). Therefore, we can actually get rid of Ljk and
use a constant ν to bound the expected cumulative error after
skipping those updates—this then yields Assumption 4.

Based on the above two assumptions (note that the
convexity assumption is not required), we can obtain the
following theorem:

Theorem 2 (Convergence Property). Under the Assumption §3
and Assumption §4, after running T iterations under APF, we
have:

1∑T
k=1 ηk

T∑
k=1

ηkE[‖∇F (xk)‖2] ≤ 4(F (x0)− F (x?))∑T
k=1 ηk

+
4σ2β2ν2γ2

∑T
k=1 η

3
k∑T

k=1 ηk
+

2βσ2
∑T
k=1 η

2
k∑T

k=1 ηk
.

(6)

Proof. Under the Assumption of β-smooth of F , we have

F (x̃k+1)− F (x̃k) ≤ ∇F (x̃k)T (x̃k+1 − x̃k) +
β

2
‖x̃k+1 − x̃k‖2

= −ηk∇F (x̃k)T gk(xk) +
η2
kβ

2
‖gk(xk)‖2.

(7)
Taking the expectation at iteration k, we have

E[F (x̃k+1)]− F (x̃k)

≤ −ηk∇F (x̃k)TE[gk(xk)] +
η2
kβ

2
E[‖gk(xk)‖2]

= −ηk∇F (x̃k)T∇F (xk) +
η2
kβ

2
E[‖gk(xk)‖2]

= −ηk
2
‖∇F (x̃k)‖2 − ηk

2
‖∇F (xk)‖2

+
ηk
2
‖∇F (x̃k)−∇F (xk)‖2 +

η2
kβ

2
E[‖gk(xk)‖2]

≤ −ηk
2
‖∇F (x̃k)‖2 +

ηkβ
2

2
‖x̃k − xk‖2 +

η2
kβ

2
E[‖gk(xk)‖2]

= −ηk
2

(‖∇F (x̃k)‖2 + β2‖xk − x̃k‖)

+ ηkβ
2‖xk − x̃k‖2 +

η2
kβ

2
E[‖gk(xk)‖2]

≤ −ηk
2

(‖∇F (x̃k)‖2 + β2‖xk − x̃k‖)

+ ηkβ
2‖xk − x̃k‖2 +

η2
kβσ

2

2
.

(8)
Taking the expectation before k, it yields

E[F (x̃k+1)]− E[F (x̃k)] ≤ ηkβ2E[‖xk − x̃k‖2]

+
η2
kβσ

2

2
− ηk

2
E[(‖∇F (x̃k)‖2 + β2‖xk − x̃k‖)].

(9)

Here we first focus on the term of E‖xk − x̃k‖2. For those
frozen parameters, the gap is quantified by Assumption 4;
for those non-frozen parameters which is updated under
vanilla SGD without any APF interference, there is no gap
incurred in expectation. Therefore, let lj represent the frozen
length so far of the j-th scalar, we have

E‖xk − x̃k‖2 = E(
∑
j

|xjk − x̃jk|
2)

=
∑
j

E|
lj∑
l′=0

ujk+l′ |
2 ≤ ν2η2

kγ
2
∑
j

(σj)2 = ν2η2
kγ

2σ2.

(10)
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Applying the above inequality to eq. (9), we have

E[F (x̃k+1)]− E[F (x̃k)] ≤ η2
kσ

2(ηkβ
2ν2γ2 +

β

2
)

− ηk
2
E[(‖∇F (x̃k)‖+ β2‖xk − x̃k‖2)].

(11)

Then we can obtain

ηkE[(‖∇F (x̃k)‖2 + β2‖xk − x̃k‖2)]

≤ 2(E[F (x̃k)]− E[F (x̃k+1)]) + η2
kσ

2(2ηkβ
2ν2γ2 + β).

(12)
Using the β-smooth property of F (x), we have

‖∇F (xk)‖2 = ‖∇F (xk)−∇F (x̃k) +∇F (x̃k)‖2

≤ 2‖∇F (xk)−∇F (x̃k)‖2 + 2‖∇F (x̃k)‖2

≤ 2β2‖xk − x̃k‖2 + 2‖∇F (x̃k)‖2.
(13)

Combine with eq. (12), we obtain

ηkE[‖∇F (xk)‖2] ≤ 2ηkE[β2‖xk − x̃k‖2 + ‖∇F (x)‖2]

≤ 4(E[F (x̃k)]− E[F (x̃k+1)]) + 2η2
kσ

2(2ηkβ
2ν2γ2 + β).

(14)
Summing up the above inequality for k = 1, 2, ..., T , we
have

T∑
k=1

ηkE[‖∇F (xk)‖2] ≤ 4(F (x0)− F (x?))

+ 4σ2β2ν2γ2
T∑
k=1

η3
k + 2βσ2

T∑
k=1

η2
k.

(15)

By dividing the summation of learning rates, we have:

1∑T
k=1 ηk

T∑
k=1

ηkE[‖∇F (xk)‖2] ≤ 4(F (x0)− F (x?))∑T
k=1 ηk

+
4σ2β2ν2γ2

∑T
k=1 η

3
k∑T

k=1 ηk
+

2βσ2
∑T
k=1 η

2
k∑T

k=1 ηk
.

Theorem 2 implies that model training under APF can
converge to 0 if T is large enough, when ηk is set to satisfy
the following condition:

lim
T→∞

T∑
k=1

ηk =∞ and lim
T→∞

∑T
k=1 η

2
k∑T

k=1 ηk
= 0. (16)

Therefore, if we set ηk = O( 1√
T

) which satisfies the
conditions in eq. (16), then model convergence can be
guaranteed under APF.

5 MORE AGGRESSIVE PARAMETER FREEZING:
APF# AND APF++
In standard APF, we focus on identifying and freezing those
stable parameters: The more parameters becoming stable,
the larger communication reduction benefit APF can yield.
However, for large over-parameterized models like ResNet
and VGG [43], [65], many parameters may not converge to
a fixed point (i.e., stabilize) due to irregular landscapes like
flat minima [26] or saddle points [31]: They are not stable even
after the model converges, which may saliently limit the
performance benefit of APF.
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Fig. 9: For over-parameterized models, the sampled parame-
ters may drift or perform random walk after convergence.

We first reveal that problem with testbed measurements.
In Fig. 9, we show the variations of two randomly sampled
parameters in ResNet and VGG. Compared with the parame-
ter variations of smaller models (as in Fig. 1, Fig. 4 and Fig. 7),
we find that the parameters in large over-parameterized
models exhibit more salient fluctuations. Moreover, even
after the model trained reaches the highest accuracy, the
sampled parameters are still not stable; instead, they conduct
random walk in fixed or ad-hoc directions without affecting
accuracy. In fact, this is a natural result caused by irregular
landscapes like flat minima and saddle points [26], [31].
For such over-parameterized models, the fraction of stable
parameters that could be frozen under APF may be quite
small (as shown later in Fig. 11b of Sec. 7).

Therefore, for over-parameterized large models, we can
try freeze the model parameters more aggressively to harvest
larger performance benefit. To this end, we propose two APF
extensions—APF# and APF++, which randomly associate
some unstable parameters with a non-zero freezing period.

APF#. APF# is directly motivated by the famous Dropout
technique [24], [33], [52]. By randomly (typically with a
probability of 0.5) disabling some neural connections in each
iteration, Dropout has been shown to saliently improve the
model generalization capability. Similarly, for each unfrozen
parameter in APF#, we randomly (under a fixed probability)
associate it with a freezing period of 1. In this way, it can
be expected that the transmission amount can be further
reduced with model accuracy still preserved.

APF++. Note that to design an aggressive version of APF,
we need to answer two questions: What is the probability
to put an unstable parameter into freezing? And how long
is that freezing period? In APF# the two answers are both
fixed (0.5 and 1) to resemble Dropout, yet in APF++ we let
both of them gradually increase during the training process.
That is, given the round number K, we set the probability
to freeze a unstable parameter as a1K , and the length of the
freezing period is randomly sampled from [1, 1+a2K], where
a1 and a2 are predefined coefficients. APF++ is motivated
by the fact that the earlier training phase is usually more
important for model convergence [4], [62], implying that the
freezing probability can be larger in the end. Moreover, over-
parameterized models with irregular landscapes like flat
minima may allow for longer random freezing, with no need
to limit it to merely one round. This way, it is expected that
APF++ can attain even larger communication reduction with
comparable accuracy performance for over-parameterized
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models.

6 IMPLEMENTATION

In this section we focus on implementing the APF algorithm
in a practical manner. We first customize the vanilla APF
algorithm to make it efficient in communication, computation
and memory, as well as to make it more roust against
improper hyper-parameter setups. Then we elaborate the
implementation details with the PyTorch framework.

6.1 Customizing APF for Efficiency and Robustness

For better communication efficiency—updating parameter
freezing status on clients. Identifying stabilized parameters
is the first step to eliminate unnecessary parameter syn-
chronization. Doing this on the central server would incur
additional communication cost of sending the results back to
clients. Therefore, we choose to perform parameter stability
check on the client side. Given the memory and computing-
power limitations of edge devices, calculating the effective
perturbation defined in eq. (1) is resource prohibitive, as
it requires each client to locally store a series of model
snapshots and process them frequently. Therefore, we need
to further mitigate the computation and memory overhead
incurred by APF.

For better computation efficiency—checking stability once-
for-multiple-rounds. To reduce the computation cost, we
allow the frequency of stability check to be relaxed from
once-for-per-round to once-for-multiple-rounds. Correspondingly,
we judge stability based on the accumulated model updates
between two consecutive checks. This is feasible because a
stabilized parameter would remain so when observed at a
coarser time granularity.

For better memory efficiency—incorporating EMA smooth-
ing in calculating effective perturbation. To be memory-
efficient, instead of maintaining a window of previous
updates, we adopt the Exponential Moving Average (EMA)
method to calculate effective perturbation. For a parameter
in the Kth stability check, let ∆j

K represent the cumulative
update since the last check for parameter j. Then the effective
perturbation of this parameter, PjK , can be defined as:

PjK =
|EjK |
AjK

, where EjK = αEjK−1 + (1− α)∆j
K ,

AjK = αAjK−1 + (1− α)|∆j
K |.

(17)

Here EK is the moving average of the parameter updates,
and AjK is the moving average of the absolute value of
parameter updates. The smoothing factor α is set close to
1. This way, the nice properties of effective perturbation
under the previous definition of eq. (1)—close to 1 if model
updates are of the same direction, and close to 0 if they
oscillate—still hold for PK yet at a much lower compute and
memory cost. In addition, decaying the earlier updates with
EMA is sensible because recent behavior is more significant.
Therefore, in the following, we determine a parameter as
stable if its effective perturbation under this new definition
is smaller than a given stability threshold.

For better robustness—enabling stability threshold decay.
Ideally, the stability threshold should be loose enough to

Central 
Server                                                                                                                                  

Local
Training

APF
Manager

Local
Training

APF
Manager select non-frozen 

     parameters
push/pull non-frozen

     parameters
restore full model

 

      

   

Fig. 10: FL workflow with APF_Manager.

include all stabilized parameters (i.e., avoid false negatives),
and in the meantime be tight enough to not mistakenly include
any unstable parameters (i.e., avoid false positives). However,
we cannot assume that the stability threshold is always set
appropriately. To be robust, we introduce a mechanism that
adaptively tunes the stability threshold at runtime: Each time
when most (e.g., 80%) parameters have been categorized as
stable, we decrease the stability threshold by one half—a
method similar to learning rate decay. This way, the negative
effect of improper stability thresholds can be gradually
rectified, which will be verified later in §7.8.

6.2 Implementing APF Atop PyTorch Framework

Workflow overview. We implement APF as a pluggable
Python module, named APF_Manager, atop the PyTorch
framework [2]. The detailed workflow with APF_Mananger
is elaborated in Fig. 10 and Alg. 1. In each itera-
tion, after updating the local model, each client calls
the APF_Manager.Sync() function to handle all the
synchronization-related issues. The APF_Manager wraps up
all the APF-related operations (stability checking, parameter
freezing, model synchronization, etc.), rendering the APF
algorithm transparent and also pluggable to edge users. Next
we introduce the key techniques in our APF implementation.

Using a bitmap to represent parameter freezing status.
When doing global synchronization, the APF_Manager
selects and packages all the unstable parameters into a
tensor for fast transmission. The selection is dictated by
a bitmap Mis frozen representing whether each (scalar) pa-
rameter should be frozen or not, which is updated in the
function StabilityCheck() based on the latest value of
effective perturbation. To avoid extra communication over-
head, the APF_Manager on each client refreshes Mis frozen
independently. Note that, since Mis frozen is calculated from
synchronized model parameters, the values of Mis frozen
calculated on each worker would be always identical.

Emulating the effect of fine-grained parameter freezing.
A key implementation challenge is that, PyTorch operates
parameters at the granularity of a full tensor, with no
APIs supporting parameter freezing at a granularity of per
dimension (scalar). This also holds in other machine learning
frameworks like TensorFlow [3] and MXNet [14]. To achieve
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Algorithm 1 Workflow with Adaptive Parameter Freezing

Require: Fs, Fc, Ts . Fs: synchronization frequency (i.e., synchronization is
conducted once for Fs iterations); Fc: stability check frequency; Ts: threshold
on Pk below which to judge a parameter as being stable

Client: i = 1, 2, ..., N :
1: procedure CLIENTITERATE(k)
2: xi

k ← xi
k−1 + ui

k . update local model xi
k on client-i

3: xi
k ←APF_Manager.Sync(xi

k) . pass model to APF_Manager

Central Server:
1: procedure AGGREGATE(x̆1

k, x̆2
k, ..., x̆N

k )
2: return 1

N

∑N
i=1 x̆

i
k . aggregate all the non-frozen parameters

APF Manager:
1: procedure SYNC(xi

k)
2: x̄i

k ←Mis frozen ? xi
k−1 : xi

k . emulate freezing by
parameter rollback; Mis frozen: freezing mask

3: if k mod Fs = 0 then
4: x̆i

k ← x̄i
k.masked select(!Mis frozen)

. x̆i
k : a compact tensor composed of only the unstable parameters

5: x̆k ←Central_Server.aggregate(x̆i
k)

. synchronize the tensor containing unstable parameters

6: x̄i
k ← x̄i

k.masked fill(!Mis frozen, x̆k)
. restore the full model by merging the frozen (stable) parameters

7: if k mod Fc = 0 then
8: Mis frozen←StabilityCheck(x̄i

k,Mis frozen) . update
Mis frozen

9: return x̄i
k

10: function STABILITYCHECK(x̄i
k,Mis frozen)

. Operations below are tensor-based, supporting where selection semantics
11: update E, A, Pk with x̄i

k

12: Lfreezing ← Lfreezing + Fc where Pk ≤ Ts
13: Lfreezing ← Lfreezing/2 where Pk > Ts

. Lfreezing: freezing period lengths, updated in TCP-style

14: Iunfreeze ← k + Lfreezing
. Iunfreeze: round ids representing freezing deadlines

15: Mis frozen ← (k < Iunfreeze) . update freezing mask
16: return Mis frozen

fine-grained parameter freezing, we choose to emulate the
freezing effect by rolling back: those should-be-frozen scalar
parameters participate model update normally, but after
each iteration, their values are rolled back to their previous
values (Line-2 in Alg. 1). Meanwhile, all APF operations are
implemented with the built-in tensor-based APIs of PyTorch
for fast processing.

Complexity analysis. Given that edge devices are resource-
constrained, we need to be careful with the overheads
incurred by APF operations. It is easy to see that the
space and computation complexity of Alg. 1 is linear to
the model size, i.e., O(|x|). This is acceptable because
memory consumption in model training is mostly incurred
by input data and feature maps, compared to which the
memory consumption of the model itself is usually orders-of-
magnitude smaller [48]. Meanwhile, with Tensor-processing
APIs provided by PyTorch, the tensor traversal operations of
APF are much faster than the already-existing convolution
operations in forward or backward propagations. Such a
light-weight nature allows APF to be deployed in resource-
constraint scenarios like on IoT devices, and we will evaluate
APF overheads later in §7.9.

Model LeNet-5 ResNet-18 LSTM
Accuracy w/APF 0.666 0.842 0.879s
Accuracy w/o APF 0.652 0.842 0.869 s

TABLE 1: The Best Testing Accuracy for Each Model.

Model LeNet-5 ResNet-18 LSTM
Transmission-

Volume w/ APF 239 MB 2.62 GB 194 MB

Transmission-
Volume w/o APF 651 MB 3.12 GB 428 MB

APF Improvement 63.3% 16.0% 54.7%

TABLE 2: Cumulative Transmission Volume.

7 EVALUATION

In this section, we systematically evaluate the performance
of our APF algorithm family. We start with end-to-end
comparisons between APF and the standard FL scheme,
and then resort to a series of micro-benchmark evaluations to
justify the superiority of APF in various scenarios, including
its extended versions (APF#, APF++ and APF with Quanti-
zation). Finally we examine the hyper-parameter sensitivity
as well as the extra overheads incurred.

7.1 Experimental Setup

Hardware setup. We create a FL architecture5 with 50
EC2 m5.xlarge instances as edge clients, each with 2
vCPU cores and 8GB memory (similar with a smart phone).
Meanwhile, following the global Internet condition [1], the
download and upload bandwidth of each client is configured
to be 9Mbps and 3Mbps, respectively. The central server is a
c5.9xlarge instance with a bandwidth of 10Gbps.

Dataset setup. Datasets in our experiments are CIFAR-10
and the KeyWord Spotting dataset (KWS)—a subset of the
Speech Commands dataset [58] with 10 keywords, which are
partitioned across the 50 clients. To synthesize non-IID data
distribution, we independently draw each client’s training
samples following Dirichlet distribution [64], which controls
local class evenness via a concentration parameter α (α→∞
means IID data distribution). In particular, we set α = 1
on each worker (under which the expected max-min ratio
among sample numbers of different classes is over 50).

Model setup. Models trained upon the CIFAR-10 dataset
are LeNet-5 and ResNet-18, and upon the KWS dataset is a
LSTM network with 2 recurrent layers (the hidden size is 64),

5. In real-world FL scenarios, due to poor connection and client insta-
bility, some clients may dynamically leave or join the FL process [40]. Yet
this is only an engineering concern and does not affect the effectiveness
of our APF algorithm, because with admission control [7], active workers
in each round always start with the latest global model (as well as
Mis frozen for APF). For simplicity, all the clients can work persistently in
our FL architecture setup.

Model LeNet-5 ResNet-18 LSTM
Per-round

Time w/APF 0.74s 139 s 1.8s

Per-round
Time w/o APF 1.02s 158s 2.2s

Improvement 27.5% 12.1% 18.2%

TABLE 3: Average Per-round Time.
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(a) LeNet-5
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(b) ResNet-18
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(c) LSTM

Fig. 11: Test accuracy curves when training different models with and without APF.

all with a batch size of 100. Meanwhile, for diversity we use
the Adam [19] optimizer for LeNet-5, and SGD optimizer for
ResNet-18 and LSTM; their learning rates are respectively
set to 0.001, 0.1, and 0.01 (default for each model-optimizer
combination), with a weight decay of 0.01.

APF setup. Moreover, the default synchronization and
stability check frequency are respectively set as 10 and 50.
Regarding the stability check of APF, the EMA parameter α
is 0.99, and the stability threshold on effective perturbation is
0.05, which is halved once the fraction of frozen parameters
reaches 80%, a method we introduced in §6.1.

7.2 End-to-End Evaluations of Standard APF
Convergence validity. Fig. 11 shows the test accuracy curves
for training the three models with and without APF. The
synchronization and stability check frequencies (Fs and Fc)
are set as 10 and 50. Here a model converges if its test
accuracy has not changed for 100 rounds, and the dashed red
lines represent the ratio of frozen parameters in each round.
These results demonstrate that APF does not compromise
convergence. We list the best-ever testing accuracy in each
case in Table 1. In particular, we notice that when training
LeNet-5 and LSTM, APF actually achieves a better accuracy.
This is because, like Dropout [52], intermittent parameter
freezing under APF can break up parameter co-adaptations
and avoid overfitting, which improves the model’s general-
ization capability.

Communication efficiency. We next turn to the efficiency
gain of APF. Table 2 summarizes the cumulative transmission
volume of each client up to convergence, showing that APF
can greatly reduce the transmission volume. For LeNet-5
for example, it provides a saving of 63.3%. Table 3 further
lists the average per-round time (i.e., training time divided by
the number of rounds) in each case, showing that APF can
speed up FL by up to 27.5%. For extreme cases where the
bandwidth (e.g. with cellular networks) is much less than
the global average, it is expected that the speedup would be
even larger.

7.3 APF Performance on Extremely Non-IID Data
Recall that in Sec. 4.1 we explored two strawman solutions to
avoid transmitting stable parameters: partial synchronization
(i.e., only synchronizing the unstable parameters and having
the stable ones updated locally) and permanent freezing (i.e.,

0 600 1200 1800 2400 3000
Communication Round

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Standard FL
APF
Partial Sync
Permanent Freezing

(a) LeNet-5

0 300 600 900 1200 1500
Communication Round

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Standard FL
APF
Partial Sync
Permanent Freezing

(b) LSTM

Fig. 12: Performance comparison among different schemes
when training LeNet-5 and LSTM on extremely non-IID data.

no longer updating the stable parameters). Here we compare
their performance with standard FL and APF in a setup with
extremely non-IID data. In particular, we train LeNet-5 with
5 workers, and each worker is configured to host only 2
distinct classes of CIFAR-10.

As shown in Fig. 12a, APF achieves the same accuracy
as standard FL for LeNet-5. More importantly, because
parameter freezing in APF can avoid overfitting and improve
the model generalization capability, in Fig. 12b it attains
an accuracy improvement of 18% over standard FL, which
is consistent with our previous conclusion from Fig. 11.
Meanwhile, in each case, the accuracy performance of
APF is much better than both partial synchronization and
permanent freezing methods.

7.4 Comparison against other Sparsification Methods

We further compare the performance of APF with two
typical sparsification methods in the literature: Gaia [27]
and CMFL [55], which have been introduced in Sec. 2. We
implement6 Gaia and CMFL also with PyTorch, and in our
evaluation their hyper-parameters are set to the default
values as in their papers: The significance threshold in Gaia
is 0.01 (meaning that updates with less-than-1% change
will not be reported) and the relevance threshold in CMFL
is 0.8 (meaning that updates with less-than-80% direction
consistency will not be reported).

6. We implement Gaia and CMFL with two respective Python
modules—Gaia_Manager and CMFL_Manager. Their workflows are
similar with that of APF_Manager: First select the valuable parameters
for transmission, second to conduct remote synchronization, and third
to restore the full model from the synchronized portion.
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Fig. 13: Accuracy performance of different sparsification
methods.
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Fig. 14: Cumulative transmission amount under different
sparsification methods.

Fig. 13 shows the accuracy curves when training LeNet-5
and LSTM with 5 clients each hosting two distinct sample
classes. As shown in Fig. 13, in each case APF can always
make the best model accuracy. This is because Gaia and
CMFL are blind to the long-term model training process, and
updates that are temporally insignificant (in value) or irrele-
vant (in update direction) may still need to be transmitted to
ensure validity. That is, purely local sparsification decisions
may not be accurate for long-term model convergence.

Furthermore, APF can also surpass Gaia and CMFL in
the communication benefit. Fig. 14 shows the cumulative
transmission amount when training LeNet-5 and LSTM
respectively under the three schemes (with both pull and
push transmission considered). For Gaia and CMFL (with
decaying thresholds as elaborated in their papers), their
communication reduction performance is stable, rendering
the cumulative transmission amount almost linear to the
round number; yet, APF can achieve larger reductions in
later rounds by freezing more stable parameters. More
importantly, Gaia and CMFL only compress the parameter
transmission in the push phase, yet APF eliminates the
transmission of stable parameters in both pull and push phases,
which helps to make a larger communication reduction.

7.5 Necessity of the TCP-style Control Mechanism

Note that a key building block of APF is a TCP-style mecha-
nism to control the parameter freezing period, i.e., additively
increase or multiplicatively decrease the freezing period of each
parameter based on whether that parameter keeps stable
after being unfrozen. Then, is it necessary or can we replace
it with a simpler mechanism? To explore that, we replace
it with three different control mechanisms: pure-additive—
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Fig. 15: A comparison of the TCP-style control scheme in
APF against other potential design choices. Pure-Additively
means to additively increase or decrease the freezing period
by 1; Pure-Multiplicatively means to multiplicatively increase
or decrease the freezing period by 2×; Fixed (10) means
to freeze each stabilized parameters for 10 (in number of
stability checks, i.e., for 10× Fc iterations).

increase or decrease the freezing period always additively;
pure-multiplicative—increase or decrease the freezing period
always multiplicatively; and fixed—freeze each stabilized
parameter for a fixed period (across 10 stability checks or for
10× Fc iterations in our experiment).

Fig. 15 shows the validating accuracy and instantaneous
stable ratio under each scheme for LeNet-5. From Fig. 15b,
we find that different control schemes exhibit a similar
performance on stable ratio—meaning that they can reduce
the overall communication volume to a similar extent; yet
on the other hand, our TCP-style mechanism—by freezing
parameters tentatively and unfreezing them agilely once
parameter shifting occurs—can avoid the negative impact of
parameter freezing, and as as shown in Fig. 15a, thus yield
the best testing accuracy.

7.6 Effectiveness of APF# and APF++

Recall that in §5 we propose two APF extensions, APF# and
APF++, to attain larger transmission reduction with more
aggressive parameter freezing. In this subsection we evaluate
their effectiveness with micro-benchmark measurements in a
cluster of 10 nodes (under the SGD optimizer with Fc = Fs).

In Fig. 16, we show the training performance of LeNet-
5 and LSTM under APF# against that under vanilla APF.
To be specific, in APF# we randomly freeze those unstable
parameters for 1 round with a probability of 0.5. Our
measurements show that APF# achieves a similar accuracy
performance as APF (the training improvement in the earlier
phase under APF# is slower but would catch up in later
phase, similar to the well-known behavior of Dropout), with
a better communication compression level. For LeNet-5 that
additional performance gain is 5.5% and for LSTM that is
14.2%.

In Fig. 17, we show the training performance of LeNet-
5 and ResNet-18 under APF++ against vanilla APF. In
our setup, an active parameter is put to freezing with a
probability of K

4000 (for LeNet-5) or K
2000 (for ResNet-18),

and the associated freezing length is randomly sampled
from the interval [1, 1 + 1

20K], where K is the round
number. In Fig. 17a, while APF++ can remarkably reduce
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Fig. 16: Compared with vanilla APF, APF# can further
increase the average parameter freezing ratio (from 66.5% to
70.2% for LeNet-5, and from 62.4% to 71.3% for LSTM) with
accuracy preserved.
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Fig. 17: APF++ can substantially enhance the communication
compression level, without hurting ResNet accuracy.

the transmission amount, its aggressiveness unfortunately
compromises the model accuracy because LeNet-5 is not
over-parameterized for CIFAR-10 dataset; in contrast, in
Fig. 17b APF++ can substantially improve the parameter
frozen ratio of ResNet-18 (up to an average value of 77%),
without hurting the accuracy performance. Therefore, for
over-parameterized large models, it is suitable to adopt
APF++ for much better communication efficiency.

7.7 Combination with Other Optimization Techniques

As a sparsification method, APF can be combined with other
non-sparsification methods to further enhance FL perfor-
mance. In this subsection, we evaluate the APF performance
when combined with a simple quantization method as well
as the FedProx optimization method [35].

Combining APF with quantization. While APF works by
reducing the number of parameters to be transmitted, quan-
tization means to reduce the cost to transmit each parameter,
and thus the two methods can be adopted simultaneously.
To verify that feasibility, we integrate APF with a simple
quantization method—using 16 bits instead of the default 32
bits to represent each parameter.

In our implementation to realize such a combination,
we create a Quantization_Manager and stack it atop the
APF_Manager in Fig. 10. In the pushing phase, after the filter-
ing operation of APF, the Quantization_Manager takes
over the compressed parameters and calls Tensor.half()
provided by PyTorch to perform a second compression. In the
pulling phase, the Quantization_Manager first restores
the full precision, then the APF_Manager restores the full
model.
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Fig. 18: Training performance respectively under APF and
APF+Quantization (APF+Q).

In Fig. 18, we show the APF convergence curve of LeNet
and LSTM respectively with and without Quantization. We
find that APF with Quantization (APF+Q)—with only a half
of the initial communication cost—exhibits a very similar
accuracy and stability performance as vanilla APF, echoing
the observation of quantization impact in [5]. Overall, APF+Q
can reduce the communication amount by 83.2% for LeNet
model and 81.6% for LSTM model. It can be expected that,
such improvements can be even larger if more aggressive
quantization levels are adopted.

Combination with FedProx. FedProx [35] is a federated
optimization algorithm to address the challenges related to
system and statistical heterogeneity. In typical FL scenarios,
participants with inferior resources would become stragglers,
and they can only process a portion of the local samples
at the expected synchronization barriers. At that moment,
both dropping (as in FedAvg) or naively incorporating those
stragglers’ intermediate results would increase the statistical
heterogeneity and adversely impact convergence behavior.
To improve training efficiency and stability, FedProx also
includes the intermediate results from stragglers—yet with
a special proximal term added to the objective function to
ensure convergence validity. That is, in round k + 1 starting
from global model xk, each client i under FedProx would
optimize hi(x,xk) = F i(x)+ µ

2 ‖ x−xk ‖
2 instead of F i(x).

To confirm the feasibility of integrating APF with FedProx,
we create a FL micro-benchmark with both system and
statistical heterogeneity, following a method similar to the
FedProx paper [35]. In our measurements, we train LeNet-5
on CIFAR-10 datasets with 5 clients each hosting 2 label
classes. Among the clients there are two stragglers that
can only process 25% and 50% of the expected workloads
in each round. In Fig. 19, we respectively measure the
training performance under (1) FedAvg, (2) FedProx, and
(3) FedProx+APF; here the FedProx hyperparameter µ is
set to the recommended value 0.01. From Fig. 19a, by fully
incorporating the results of all the clients, FedProx achieves
much higher accuracy performance over FedAvg. Moreover,
when APF is adopted with FedProx, we can attain similar
accuracy performance with much less communication cost:
In average, APF freezes around 55.0% of all the parameters
over the training process. Therefore, APF can be effectively
combined with FedProx to achieve high accuracy as well as
low overhead for FL.
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Fig. 19: Training performance respectively under FedAvg,
FedProx and FedProx+APF.

7.8 Hyper-parameter Sensitivity Analysis

In this subsection, we systematically evaluate the sensitivity
of APF performance against various hyper-parameters (e.g.,
stability threshold Ts, stability check frequency Fc, learning
rate η, and the synchronization frequency Fs). Unless other-
wise specified, we experiment with the LeNet-5 model which
is more common in the literature.

Stability threshold. As discussed in Sec. 4.2, to make
APF robust to stability threshold, we have introduced a
mechanism that tightens the stability threshold each time
most (e.g., 80% in our setup) parameters become stable.
To verify the effectiveness of this approach, we purposely
loosen the initial stability threshold on effective perturbation
from 0.05 to 0.5, and then train LeNet-5 again following
the setup in Sec. 7.1. Fig. 20a depicts the corresponding
accuracy curve, together with the instantaneous ratio of
frozen parameter. Comparing Fig. 20a with Fig. 11a we can
easily find that, under a looser initial stability threshold, the
number of frozen parameters increases more rapidly, but
the price paid is that the instantaneous accuracy is slightly
below that of standard FL (before round-600). However, after
several tightening actions, APF gradually catches up with—
and finally outperforms—standard FL in accuracy. Therefore,
our APF algorithm can still yield good performance even
with inadequate hyper-parameters.

Stability check frequency. To evaluate the impact of the sta-
bility check frequency, we resort to an experiment as shown
in Fig. 20b. In Fig. 20b, we train the LSTM model with Fc
respectively be Fs and 5Fs, the later meaning that we update
the freezing status once for 5 rounds. Correspondingly, for
fair comparison, when Fc is 5 we increase the freezing round
by a constant of 5 (instead of 1) if the parameter stability
continues, and adopt a scale-down factor of 5 (instead of 2) if
the stability trend no longer persists. From Fig. 20b, the two
different Fc setups yield a similar training performance in
both accuracy and stability ratio, confirming the robustness
of our APF algorithm against the Fc hyper-parameter.

Learning rate. We further evaluate the performance sensitiv-
ity of APF against different learning rate setups. In Fig. 21a,
we respectively set the learning rate η to 0.01 and 0.001, and
measure the accuracy and frozen ratio of APF in each case.
Fig. 21a reveals that with a larger learning rate, the model
accuracy is enhanced at a faster pace, and in the meantime
the model parameters get stable more rapidly.

Recall that Theorem 2 suggests APF can yield better
convergence guarantee with a decaying learning rate (al-
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Fig. 20: When the initial stability threshold is more loose, or
when the stability check is less frequent, LeNet-5 and LSTM
can still converge well.

though our experiments empirically show that APF does
not compromise the model accuracy even without such a
decay). To set up the decaying learning rate, we initialize η
to 0.1 and multiply it with a factor of 0.99 once after every
10 epochs, and Fig. 21b shows the training performance
with and without APF. We notice that, the general trend of
model accuracy and parameter frozen ratio with learning rate
decay are similar as before except for two minor differences.
First, with a larger learning rate in the beginning (0.1 in
Fig. 21b against 0.01 in Fig. 21a), the model parameters
become stable much more rapidly. Second, during the later
phase the parameter frozen rate begins to drop slowly—
this is because a decaying learning rate would allow the
model parameters to keep refined subtly. More importantly,
with such a decay learning rate, the accuracy benefit of
APF against vanilla FedAvg becomes even larger: After
3000 rounds, APF attains an accuracy superiority of 0.033—
with an accumulated communication reduction of 61.9%. To
summarize, APF can make salient performance improvement
regardless of the particular learning rate setup.

Synchronization frequency. Note that in this paper we
use synchronization frequency Fs to control the number
of local iterations within each round; here Fs is equivalent
to the number-of-local-epochs (E) hyper-parameter in other FL
papers [32], [35]—because all clients share the same batch
size and local dataset size. We then evaluate how Fs would
affect the APF performance. Our experiments are conducted
under a non-IID setup with 5 clients each hosting two CIFAR-
10 classes, because in the literature [36], [56] Fs may severely
impact the training performance for cases with non-IID data.
In our measurements, we set Fs respectively to 10, 100 and
500, and depict the accuracy and parameter frozen ratio in
Fig. 22. On the one hand, with less frequent synchronization
(Fs = 500), parameters would be refined more extensively
within each round, therefore the model accuracy and the
parameter frozen ratio would increase faster in the number
of communication rounds. On the other hand, less frequent
synchronization would make the aggregated model updates
less accurate, thus in Fig. 22a the model training process with
Fs = 500 stagnates at a suboptimal accuracy.

7.9 Computation and Memory Overheads

The last question we seek to answer is, what are the mem-
ory and computation overheads of APF? We measure the
extra computation time and physical memory consumption
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Fig. 21: APF performance when training LeNet-5 with
different or decaying learning rates.
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Fig. 22: APF performance under different synchronization
frequency setups.

incurred by APF. Table 4 lists the overheads for different
models. As implied in Table 4, for small models like LeNet
and LSTM, both the computation and memory overheads
are fairly small (< 2.35%); for larger models like ResNet-
18, because its model size is more comparable to that of
input and feature map, APF’s memory overhead becomes
larger (8.51%). Overall, considering the salient reduction of
network transmission volume and convergence time, the
overhead of APF is indeed acceptable.

8 ADDITIONAL RELATED WORK

In this paper, we developed a parameter-freezing method
with the objective of mitigating the model synchronization
bottleneck. In this section, we briefly survey the related
work that shares a similar objective (i.e., speeding up model
synchronization with either communication compression
or transmission scheduling), or share a similar solution
methodology (i.e., with parameter-freezing).

Communication compression techniques. Recall that in §2
we have discussed a series of sparification and quantization
methods. Apart from sparsification and quantization, a
third solution category for communication compression

Model LeNet-5 ResNet-18 LSTM
Computation Time Incurred

by APF (per-round) 0.009 s 1.278 s 0.011 s

Computation Time Inflation Ratio
incurred by APF 1.93% 4.50% 1.42%

Memory Occupied
for APF Processing 1.2 MB 142 MB 4.8 MB

Memory Inflation Ratio
incurred by APF 0.18% 8.51% 2.35%

TABLE 4: Computation (extra time required for each round
in average) and memory overheads of APF.

is matrix factorization [61], [67]. Matrix factorization works
by decoupling the original model parameters as the outer
product of two vectors (called sufficient factors). In model
synchronization, only those sufficient factors are transmitted
to reduce the bandwidth consumption. Yet, that decoupling
method is mainly designed for dense fully-connected layers,
thus suffering restricted applicability for general models.

Communication scheduling techniques. To speed up model
synchronization, another common methodology is to opti-
mize the transmission schedule of gradients from different
clients or layers.

Regarding the transmission coordination of different
clients, by default all clients shall communicate their gra-
dients in synchronous mode (with Bulk Synchronous Parallel
or BSP) [67], yet it may cause severe resource wastage
due to stragglers and network collisions. To avoid such
wastage, some works respectively proposed SSP [16], [25]
and R2SP [12] to properly relax the synchronization barrier,
trading a little bit gradient accuracy for improved resource
efficiency.

Regarding the transmission coordination of different
layers, to reduce the time blocked by gradient transmission,
Zhang et. al [50], [67] proposed wait-free-backpropagation,
which pipelines gradient communication with the layer-wise
gradient computation. Besides, parameters that are updated
later in backward propagation would be accessed earlier in
the next iteration; noticing that property, several works [22],
[29], [46] proposed to assign proper priorities to gradients of
different layers, so that gradients to be accessed earlier do
not need to wait behind others in network contention. These
works achieve good performance in practice, yet they are
orthogonal to our work.

Parameter freezing techniques. Parameter freezing is a
technique already adopted in the literature—yet mainly
for computation acceleration. Brock et al. [9] proposed the
FreezeOut mechanism that gradually froze the first few
layers of a deep neural network—which were observed to
converge faster—to avoid the computation cost of calculating
their gradients. KGT [57] and AutoFreeze [37] go further
by using an adaptive approach to choose which layers are
frozen, so as to accelerate model training while preserving
accuracy. However, their operation granularity is an entire
layer, which is too coarse given the analysis in §3. Worse,
because there was no parameter unfreezing mechanism, it
has been shown that such methods like FreezeOut would
degrade the accuracy performance despite the computation
speedup [9].

9 DISCUSSIONS

APF compatibility with differential privacy. So far, we are
assuming that the original gradients are accessible over the
FL process; yet, to avoid privacy leakage, gradients are often
encrypted before being collected to the FL server, and a
typical encryption method is differential privacy (DP) [45],
[51], [60]. Differential privacy means to add random noise
to the original gradients. That noise follows a Gaussian or
Laplace distribution whose mean is set to zero, and the noise
scale is controlled by a hyper-parameter ε. Regarding the
impact of DP on our APF algorithm, we note that the added
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noise—which oscillates around 0—would make the resultant
gradients look more stable, i.e., rendering the calculated
effective perturbation metric smaller. For example, if in
extreme case the noise component dominates the gradient
value, the effective perturbation would also be 0. Yet, large
noise would severely impair the model accuracy, and in
practice the injected noise is set much smaller than the
original gradient values [60]. Therefore, when DP is adopted,
we can choose a tighter stability threshold to counteract its
impact.

Placement of freezing mask computation. Note that in
our implementation (§6.2), the freezing mask Mis frozen is
maintained purely on clients, with the objective of trading
slightly more computation for communication efficiency (no
extra communication cost). In other cases where computation
is more expensive on clients (like IoT devices), we can also
place mask computations on the FL server (or an edge server).
Besides, instead of transmitting the full mask vector, we can
otherwise transfer a dense representation (including change-
indexes and change-values), for mask updating would be
relatively slow and a dense representation is more efficient.

Applicability in cluster environments. While APF is pro-
posed for FL scenarios, it can also be applied to cluster
environments with cutting-edge hardware like GPUs, where
communication remains to be a bottleneck compared to the
large GPU throughput. Yet, compared with FL scenarios,
models trained in such clusters are usually much more
complex, including various structure types like GNNs [54]
and Transformers [18]; meanwhile, achieving SOTA accuracy
is often a primary concern, rendering manufactured training
interference more risky. We plan to customize our work
to GPU clusters later, with much broader evaluations on
advanced deep learning models.

10 CONCLUSION

In this work, to reduce the communication overhead in FL,
we have proposed a novel scheme called Adaptive Parameter
Freezing (APF), which seeks to identify the stable parameters
and then avoid their synchronization. APF identifies the
stabilized parameters based on their effective perturbation
and tentatively freezes the stable parameters for certain time
intervals, which are adjusted in an additively-increase and
multiplicatively-decrease manner. We implemented APF and
its more aggressive variants based on PyTorch, and testbed
experiments have confirmed that it can largely improve the
FL communication efficiency, with comparable or even better
accuracy performance.
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