
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 201X 1

An Alternating Direction Method Approach to
Cloud Traffic Management

Chen Feng, Member, IEEE, Hong Xu, Member, IEEE, and Baochun Li, Fellow, IEEE

Abstract—In this paper, we introduce a unified framework for studying various cloud traffic management problems, ranging from geographical
load balancing to backbone traffic engineering. We first abstract these real-world problems as a multi-facility resource allocation problem, and
then present two distributed optimization algorithms by exploiting the special structure of the problem. Our algorithms are inspired by
Alternating Direction Method of Multipliers (ADMM), enjoying a number of unique features. Compared to dual decomposition, they converge
with non-strictly convex objective functions; compared to other ADMM-type algorithms, they not only achieve faster convergence under
weaker assumptions, but also have lower computational complexity and lower message-passing overhead. The simulation results not only
confirm these desirable features of our algorithms, but also highlight several additional advantages, such as scalability and fault-tolerance.

Index Terms—cloud traffic management, load balancing, traffic engineering, datacenters, ADMM, distributed optimization

F

1 INTRODUCTION

Cloud services (such as search, social networking, etc.) are
often deployed on a geographically distributed infrastructure,
i.e., data centers located in different regions. In order to opti-
mize the efficiency of these data centers, how to orchestrate the
data transmission, including traffic flowing from users to the
infrastructure to access the cloud services, and traffic flowing
across these data centers for back-end services, has started to
receive an increasing amount of attention. We refer to these
problems generally as cloud traffic management herein.

In this paper, we introduce a unified framework for study-
ing various cloud traffic management problems, ranging from
geographical load balancing to backbone traffic engineering.
As we will see in Sec. 2, a large variety of cloud traffic
management problems can be abstracted into the following:

maximize
N∑
i=1

fi(xi1, . . . , xin)−
n∑
j=1

gj(yj) (1)

subject to ∀j :
N∑
i=1

xij = yj

∀i : xi = (xi1, . . . , xin)
T ∈ Xi ⊆ Rn

∀j : yj ∈ Yj ⊆ R.

Generically, problem (1) amounts to allocating resources from
n facilities to N users such that the “social welfare” (i.e., utility
minus cost) is maximized. We thus refer to problem (1) as
the multi-facility resource allocation problem. The utility function
fi(xi) represents the performance, or the level of satisfaction,
of user i when she receives an amount xij of resources from

• Chen Feng is with the School of Engineering, University of British Columbia,
Kelowna, British Columbia V1V 1V7, Canada. Email: chen.feng@ubc.ca.
Hong Xu is with the Department of Computer Science, City University of
Hong Kong, Kowloon, Hong Kong, China. Email: henry.xu@cityu.edu.hk.
Baochun Li is with The Edward S. Rogers Sr. Department of Electrical and
Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4,
Canada. Email: bli@ece.toronto.edu.

• This work was supported in part by the NSERC Discovery Grants (RGPIN-
2016-05310), Hong Kong RGC ECS-21201714 and CRF-C7036-15G.

each facility j, where xi = (xi1, . . . , xin)
T . In practice, this per-

formance measure can be in terms of revenue, throughput, or
average latency, depending on the problem setup. We assume
throughout the paper that fi(·) are concave. The cost function
gj(yj) represents the operational expense or congestion cost
when facility j allocates an amount yj of resources to all the
users. Note that yj is the sum of xij (over i), since each facility
often cares about the total amount of allocated resources. We
assume that gj(·) are convex. The constraint sets {Xi} and
{Yj} are used to model the additional constraints, which are
assumed to be compact convex sets.

To tackle the multi-facility resource allocation problem, we
are particularly interested in solutions that are amenable to
parallel implementations. There are several reasons. First, for
a production cloud, problem (1) is inherently a large-scale
convex optimization problem, with millions of variables or
even more. A centralized solver is highly inefficient in solving
such large-scale problems [10]. Indeed, as we shall show in
Sec. 4.2, a state-of-the-art centralized solver cannot solve an
instance of problem (1) with a moderate size after 16 hours
on a modern server. Moreover, with the upcoming Internet of
Things where each home or business may host hundreds of
devices, the scale of problem (1) will increase dramatically,
making centralized solvers impractical. Second, unlike con-
ventional traffic engineering, cloud traffic management may
operate at much finer time-scales (on the order of seconds)
[38]. Such a stringent requirement favors a fast and scalable
implementation of the underlying optimization algorithm on
multi-core CPUs [42]. Third, a cloud provider usually has
abundant servers and CPU cores, which can be easily utilized
to implement various distributed and parallel solutions.

The standard approach to constructing parallel algorithms
is dual decomposition with (sub)gradient methods. However,
it suffers from several difficulties for problem (1). First, dual
decomposition requires a delicate adjustment of the step-size
parameters, which have a strong influence on the convergence
rate. Second, dual decomposition requires the utility functions
fi(·) to be strictly concave and the cost functions gj(·) to be
strictly convex to achieve convergence. These requirements
cannot be met in many problem settings of (1) as we will

2 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 201X

demonstrate in Sec. 2.
To overcome these difficulties, in a series of our previous

work [47]–[49], we have developed a new decomposition
method for problem (1) based on alternating direction method of
multipliers (ADMM)—a simple yet powerful method that has
recently found practical use in many large-scale convex opti-
mization problems [6]. Unlike dual decomposition, an ADMM-
based method uses a single parameter, which is much easier to
tune and often leads to fast convergence. Similar applications
of ADMM to radio-access networks and fuel cell generation in
geo-distributed cloud have also been proposed in [30] and [52],
respectively.

Although ADMM has been widely applied to areas of
machine learning and signal processing, its application to net-
working research is still in an early stage. Despite the success
of the above pioneer works, several fundamental questions
still remain open. First, most prior work on the application of
ADMM is somewhat ad-hoc, proposing a number of variations
of the classical ADMM algorithm. For example, the work of
[47], [48] is based on a multi-block variant of ADMM, and
the work of [52] combines multi-block ADMM with Gaussian
back substitution. Can we develop a simple framework that unifies
(and hopefully improves) the prior art? Second, prior work often
requires the utility functions to be strictly concave or the cost
functions to be strictly convex. For instance, our previous
algorithms [47], [48] require strictly convex objective functions
and bounded level sets. Can we relax these technical assumptions
while still achieving fast convergence? Finally, parallel imple-
mentation of ADMM-based algorithms may incur some extra
computational costs and message-passing overheads. How can
we reduce these computational costs and message-passing overheads
as much as possible?

At first glance, it seems difficult to develop a unified frame-
work that requires weaker technical assumptions to ensure
convergence, and, at the same time, enjoys lower computa-
tional complexity and message-passing overhead. We achieve
this objective by making use of the following two observations.

1) The multi-facility formulation can be made general
enough by introducing “virtual” users. As we will see
in Sec. 2, with the help of “virtual” users, problem (1)
contains the previous formulations in [47]–[49], [52] as
special cases.

2) The multi-facility problem can be efficiently solved by
a distributed algorithm proposed in Chapter 7 of [6],
which, however, has been somewhat overlooked by
networking researchers.

In this paper, we first demonstrate the usefulness of the
(overlooked) distributed algorithm [6, Chapter 7] in the context
of cloud traffic management through a convergence analysis.
We then develop a new distributed algorithm that comple-
ments the aforementioned algorithm with respect to the rate
of convergence. Together, these two algorithms not only over-
come the shortcomings of dual decomposition, but also achieve
faster convergence under weaker technical assumptions and
enjoy lower overhead compared to previous ADMM-based
algorithms.

Finally, we present an extensive empirical study of these
two algorithms. Our simulation results reveal some additional
advantages of these algorithms, including their scalability to a
large number of users and their fault-tolerance with respect to
updating failures.

The main contributions of this paper are as follows:

1) We identify a variety of cloud traffic management
problems as instances of the multi-facility resource
allocation problem (1).

2) We highlight the usefulness of a known algorithm and
develop a new algorithm for problem (1). We show
that these two distributed algorithms enjoy a number
of unique advantages over dual decomposition and
previous ADMM-based algorithms.

3) We present extensive simulation results, which further
demonstrate the scalability and fault-tolerance of these
algorithms.

2 APPLICATIONS TO CLOUD TRAFFIC MANAGEMENT

In this section, we show that a large variety of optimization
problems in the context of cloud traffic management are indeed
instances of the multi-facility resource allocation problem (1).
In particular, we illustrate the inherent large scale of these
problems for production systems, and explain why the utility
function is non-strictly concave and the cost function is non-
strictly convex for some applications.

2.1 Geographical Load Balancing
2.1.1 Background
Cloud services, such as search, social networking, etc., are often
deployed on a geographically distributed infrastructure, i.e.
data centers located in different regions as shown in Fig. 1,
for better performance and reliability. A natural question is
then how to direct the workload from users among the set
of geo-distributed data centers in order to achieve a desired
trade-off between performance and cost, since the energy price
exhibits a significant degree of geographical diversity [43]. This
question has attracted much attention recently [17], [33], [34],
[43], [47]–[49], and is generally referred to as geographical load
balancing.

Requests

Mapping
nodes

Datacenters

Clients

Fig. 1. A cloud service running on geographically distributed data centers.

2.1.2 Basic Model
We now introduce a formulation for the basic geograph-
ical load balancing problem, which captures the essential
performance-cost trade-off and covers many existing works
[17], [34], [43], [47]–[49]. Here, we define a user to be an group
of customers aggregated from a common geographical region
sharing a unique IP prefix, as is often done in practice to reduce
complexity [40]. We use xij to denote the amount of workload
coming from user i and directed to data center j. We use ti
to denote the total workload of each user. We use fi(·) to

FENG ET. AL.: AN ALTERNATING DIRECTION METHOD APPROACH TO CLOUD TRAFFIC MANAGEMENT 3

represent the utility of user i, and use gj(·) to represent the
cost of data center j. These functions can take various forms
depending on the scenario as we will elaborate soon.

With these notations, we formulate the basic geographical
load balancing problem:

maximize
∑
i

fi(xi)−
∑
j

gj (yj) (2)

subject to ∀i :
∑
j

xij = ti, xi ∈ Rn+, (3)

∀j : yj =
∑
i

xij ≤ cj , (4)

where (3) describes the workload conservation and non-
negativity constraint, and (4) is the capacity constraint at data
centers. Since the constraint (3) can be rewritten as ∀i : xi ∈ Xi,
where Xi is a convex set, problem (2) is an instance of problem
(1).

Now, let us consider the utility function fi(·). Latency is
arguably the most important performance metric for most
interactive services: A small increase in the user-perceived
latency can cause substantial utility loss for the users [29].
The user-perceived latency largely depends on the end-to-
end propagation latency [16], [39], which can be obtained
through active measurements. Let lij denote the end-to-end
propagation latency between user i and data center j. The
following utility function fi has been used in [47], [48]

fi(xi) = −qti

∑
j

xij lij/ti

2

. (5)

Here, q is the weight factor that captures the relative impor-
tance of performance compared to cost in monetary terms.
Clearly, the utility function fi(·) achieves its maximum value
when latency is zero. Also, the function fi(·) depends on the
average latency

∑
j xij lij/ti. For different applications, fi may

depend on other aggregate statistics of the latency, such as the
maximum latency or the 99-th percentile latency, which may
be modeled after a norm function.

For the cost function gj(·), many existing works consider
the following [17], [34], [43], [49]

gj(yj) = PEj · PUE · E(yj). (6)

Here, PEj denotes the energy price in terms of $/KWh at
data center j. PUE, power usage effectiveness, is the ratio
between total infrastructure power and server power. Since
total infrastructure power mainly consists of server power and
cooling power, PUE is commonly used as a measure of data
center energy efficiency. Finally, E(yj) represents the server
power at data center j, which is a function of the total workload
yj and can be obtained empirically. A commonly used server
power function is from a measurement study of Google [14]:

E(yj) = cjPidle +
(
Ppeak − Pidle

)
yj , (7)

where Pidle is server idle power and Ppeak peak power.

2.1.3 Problem Scale
The geographical load balancing problem (2) would be easy
to solve, if its scale is small with, say, hundreds of variables.
However, for a production cloud, (2) is inherently an extremely
large-scale optimization. In practice, the number of users N
(unique IP prefixes) is on the order of O(105) [40]. Thus

the number of variables {xij} is O(106). The load balancing
decision usually needs to be updated on a hourly basis, or
even more frequently, as demand varies dynamically. The
conventional dual decomposition approach suffers from many
performance issues for solving such large-scale problems, as
we argued in Sec. 1. Thus we are motivated to consider new
distributed optimization algorithms.

2.1.4 Extensions
In this section, we provide some additional extensions of the
basic model (2) from the literature to demonstrate its impor-
tance and generality.

Minimizing Carbon Footprint. In (2), the monetary cost
of energy is modeled. The environmental cost of energy, i.e.,
the carbon footprint of energy can also be taken into account.
Carbon footprint also has geographical diversity due to dif-
ferent sources of electricity generation in different locations
[17]. Hence, it can be readily modeled by having an additional
carbon cost PCj in terms of average carbon emission per KWh
in the objective function of (2) following [17], [34].

Joint Optimization with Batch Workloads. There are also
efforts [33], [47], [48] that consider the delay-tolerant batch
workloads in addition to interactive requests, and the inte-
grated workload management problem. Examples of batch
workloads include MapReduce jobs, data mining tasks, etc.
Batch workloads provides additional flexibility for geograph-
ical load balancing: Since their resource allocation is elastic,
when the demand spikes we can allocate more capacity to
run interactive workloads by reducing the resources for batch
workloads.

To incorporate batch workloads, we introduce n “virtual”
users, where user j generates batch workloads running on data
center j. Let wj be the amount of resource used for batch
workloads on data center j, and let f̃j(wj) be the utility of
these batch workloads. Then the joint optimization can be
formulated as follows:

maximize
∑
i

fi(xi) +
∑
j

f̃j(wj)−
∑
j

gj(yj)

subject to ∀i :
∑
j

xij = ti, xi ∈ Rn+;w ∈ Rn+

∀j : yj =
∑
i

xij + wj ≤ cj .

The utility function f̃j(·) depends only on wj but not on la-
tency, due to its elastic nature. In general, f̃j(·) is an increasing
and concave function, such as the log function used in [47],
[48]. Clearly, this is still an instance of (1).

2.2 Backbone Traffic Engineering
2.2.1 Background
Large cloud service providers, such as Google and Microsoft,
usually interconnect their geo-distributed data centers with a
private backbone wide-area networks (WANs). Compared to
ISP WANs, data center backbone WANs exhibit unique charac-
teristics [18], [27]. First, they are increasingly taking advantage
of the software-defined networking (SDN) architecture, where
a logically centralized controller has global knowledge and
coordinates all transmissions [7], [19]. SDN paves the way
for implementing logically centralized traffic engineering. In
addition, the majority of the backbone traffic, such as copying
user data to remote data centers and synchronizing large data

4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 201X

sets across data centers, is elastic. Thus, since the cloud service
provider controls both the applications at the edge and the
routers in the network, in addition to routing, it can perform
application rate control, i.e., allocate the aggregated sending
rate of each application, according to the current network state.
These characteristics open up the opportunity to perform joint
rate control and traffic engineering in backbone WANs, which
is starting to receive attention in the networking community
[18], [24], [27].

2.2.2 Basic Model
We model the backbone WAN as a set J of interconnecting
links. Conceptually, each cloud application generates a flow
between a source-destination pair of data centers. We index
the flows by i, and denote by I the set of all flows. We
assume that each flow can use multiple paths from its source
to destination. This is because multi-path routing is relatively
easy to implement (e.g., using MPLS [13], [24], [27]) and offers
many benefits. For each flow i, we denote by Pi the set of its
available paths and define a topology matrix Ai of size |J |×|Pi|
as follows:

Ai[j, p] =

{
1, if link j lies on path p
0, otherwise.

link 1 link 2

link 3

1 3

2

Fig. 2. An illustration of three data centers with 3 links.

For example, consider a network with three data centers
and 3 links as illustrated in Fig. 2. A flow (say, flow 1) from
data center 1 to data center 3 has two paths: {link 1, link 2}
and {link 3}. In this case, |J | = 3, |P1| = 2, and the topology
matrix A1 is

A1 =

1 0
1 0
0 1

 .
Clearly, the topology matrixAi provides a mapping from paths
to links. Let wip denote the amount of traffic of flow i on path
p, and let xij denote the amount of traffic of flow i on link j.
Then we have xi = Aiwi, where wi = (wi1, . . . , wi|Pi|)

T . Since
Ai is always full column-rank (otherwise some path must be
redundant), Ai has a left-inverse A−1i such that wi = A−1i xi.
For instance, a left-inverse of A1 in the previous example is

A−11 =

[
1 0 0
0 0 1

]
.

Note that wi models the rate control decision for each
application flow. A flow corresponds to potentially many TCP
connections between a particular source-destination pair of
data centers, carrying traffic for this particular application.
We choose to model rate control at the application flow level
because the latest data center backbone architectures [24],
[27] are designed to control the aggregated sending rates of
applications across data centers. The aggregated rate can be
readily apportioned among different connections following

some notion of fairness, and rate control can be enforced by
adding a shim layer in the servers’ operating system and using
a per-destination token bucket [2].

We use fi(wi) to represent the utility of flow i, and gj(yj)
to represent the congestion cost of link j, where yj =

∑
i xij

is the total traffic on link j. The joint rate control and traffic
engineering problem can be formulated as

maximize
∑
i

fi(A
−1
i xi)−

∑
j

gj (yj) (8)

subject to ∀i : xi ∈ Rn+, (9)

∀j : yj =
∑
i

xij ≤ cj , (10)

where (9) describes the non-negativity constraint, and (10) says
that the total traffic on link j cannot exceed the capacity cj .
Clearly, problem (8) is again an instance of problem (1).

The utility function fi(wi) should be concave, such as the
log function fi(wi) = log(

∑
p wip), or a more general “rate-

fairness” function used for Internet TCP congestion control
[37]. It is worth noting that even if fi(wi) is strictly concave
(with respect to wi), fi(A−1i xi) is not strictly concave (with
respect to xi) in general. This important fact has been used in
Sec. 3.4 to demonstrate the advantages of our distributed algo-
rithms. The cost function gj(yj) is convex and non-decreasing.
For example, the function can be a piece-wise linear function
with increasing slopes, which is used in [18].

Finally, note that the topology matrix Ai only depends on
the source-destination pair. Hence, for a given source data
center, the number of all possible topology matrices is bounded
by the number of all other data centers, which is typically less
than 30. In other words, the topology matrices are easy to store
and maintain in practice. Note also that all the inverse matrices
can be computed before the algorithm runs. That is, there is no
need to calculate any A−1i on the fly.

2.2.3 Problem Scale
Similar to the geographical load balancing problem, backbone
traffic engineering is also a large-scale optimization problem
for a production data center backbone WAN. In practice, a
provider runs hundreds to thousands of applications with
around ten data centers [24], [27]. Thus the number of ap-
plication flows is O(105) to O(106). For a WAN with tens
of links, we potentially have tens of millions of variables
{xij}. Compared to geographical load balancing, the traffic
engineering decisions need to be updated over a very small
time window (say, every 5 or 10 minutes as in [24], [27]) to
cope with traffic dynamics. This further motivates us to derive
a fast distributed solution.

2.2.4 Extensions
We present some possible extensions of the basic model.

Minimizing Bandwidth Costs. Unlike big players like
Google and Microsoft, small cloud providers often rely on
ISPs to interconnect their data centers. In this case, bandwidth
costs become one of the most important operating expenses.
Although many ISPs adopt the 95-percentile charging scheme
in reality, the link bandwidth cost is often assumed to be linear
with the link traffic, because optimizing a linear cost in each
interval can reduce the monthly 95-percentile bill [50]. Hence,
the bandwidth cost can be easily incorporated by adding these
linear functions to (8).

FENG ET. AL.: AN ALTERNATING DIRECTION METHOD APPROACH TO CLOUD TRAFFIC MANAGEMENT 5

Incrementally Deployed SDN. Instead of upgrading all
routers to be SDN-capable with a daunting bill, cloud
providers could deploy SDN incrementally [1]. In such a
scenario, some routers still use standard routing protocols such
as OSPF, while other routers have the flexibility to choose the
next hop. This scenario can be easily handled by imposing
additional constraints on the set Pi of available paths such
that Pi only contains admissible paths. (See Definition 1 in [1]
for details.) Clearly, with some routers restricted to standard
protocols, the number |Pi| of available paths for flow i is
reduced, resulting in a smaller-scale optimization problem.

3 ADMM-BASED DISTRIBUTED ALGORITHMS

In this section, we will present two ADMM-based distributed
algorithms that are well suited for the multi-facility resource
allocation problem, with a particular focus on their conver-
gence rates as well as their advantages over other ADMM-
based algorithms.

3.1 A Primer on Dual Decomposition and ADMM

We begin with some basics of optimization techniques, in-
cluding dual decomposition and ADMM, which will be used
throughout the paper. We refer our readers to [4], [6], [23]
for more details. A recent extension of ADMM to non-convex
settings are in [26]

3.1.1 Dual decomposition
Dual decomposition is a standard approach to solving large-
scale convex problems, which has been widely used in the
networking research. Consider a convex optimization problem
with linear constraints:

min f(x)

s.t. Ax = b

x ∈ X ⊆ Rn

where x is the variable, f(x) is a convex function, and A is a
matrix of sizem×n. The basic idea behind dual decomposition
is to convert an optimization problem with constraints into a
new problem without constraints.

We define the Lagrange of the above problem as

L(x, λ) = f(x) +
m∑
i=1

λi(Aix− bi),

where λi is called the Lagrange multiplier associated with the
ith constraint, and the vector λ = (λ1, . . . , λm) is called the
dual variables. For any given λ, we define the Lagrange dual
function as the minimum value of the Lagrangian L(x, λ) over
x:

g(λ) = inf
x∈X

L(x, λ) = inf
x∈X

f(x) + λT (Ax− b). (11)

The dual function g(λ) has several interesting properties.
First, it amounts to solving an unconstrained optimization prob-
lem. Second, it gives lower bounds on the optimal value of the
original problem, i.e., g(λ) ≤ f(x∗), where x∗ is an optimal
solution to the original problem. This is because x∗ is also
a feasible solution to the unconstrained problem (11) for any
given λ. It turns out that the “best” lower bound matches the
optimal value. That is, g(λ∗) = f(x∗), where λ∗ maximizes
g(λ). These two properties suggest that, instead of solving the

original constrained optimization problem, we can choose to
solve a series of unconstrained problems as follows:

xk+1 := argmin
x∈X

L(x, λk),

λk+1 := λk + ρ(Axk+1 − b),

where x0 and λ0 are some initial values, and the parameter ρ
is the step size for the update of the dual variable λ.

The rationale is thatAxk+1−b is a subgradient of g(λ) at λk.
Hence, the above iterations amount to using the subgradient
method to maximize g(λ). Sometimes, we can vary the step
size ρ across different iterations, and we use ρk to denote the
step-size for the kth iteration.

Applying the above iterations to problem (1), we arrive at
the following algorithm:

Algorithm 3.1. Initialize {x0i }, {y0j }, {λ0j}. For k = 0, 1, . . . ,
repeat

1) x-update: Each user i solves the following sub-problem
for xk+1

i :

min − fi(xi) + (λk)Txi

s.t. xi ∈ Xi.

2) y-update: Each facility j solves the following sub-
problem for yk+1

j :

min gj(yj)− λkj yj
s.t. yj ∈ Yj .

3) Dual update: Each facility j updates λk+1
j :

λk+1
j := λkj + ρk

(
N∑
i=1

xk+1
ij − yk+1

j

)
.

The following (very mild) assumption is valid throughout
the paper:

Assumption 3.1. The optimal solution set of problem (1) is non-
empty, and the optimal value p∗ is finite.

It is known that Algorithm 3.1 is convergent under As-
sumption 3.1 and the assumption that the utility functions
fi(·) are strictly concave and the cost functions gj(·) are strictly
convex [4]1. However, as we have shown in Sec. 2, for many
interesting problems of form (1), either fi(·) are non-strictly
concave or gj(·) are non-strictly convex, making conventional
dual decomposition unsuitable for such applications.

3.1.2 Alternating direction method of multipliers
Alternating direction method of multipliers (ADMM) is a
decomposition method that does not require strict convexity.
Originally proposed in the 1970s, ADMM has recently received
much research attention and found practical use in many areas,
due to its superior empirical performance in solving large-scale
convex optimization problems [6]. While the convergence of
ADMM is well known in the literature (see, e.g., [4], [6]), its
rate of convergence has only been established very recently
(see, e.g., [12], [21], [22]).

1. Otherwise, if fi(·) are non-strictly concave or gj(·) are non-strictly
convex, the primal variable xij in problem (1) will not converge, leading
to the so-called oscillation problem.

6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 201X

ADMM solves convex optimization problems in the form

minimize f(x) + g(y) (12)
subject to Ax+By = c,

x ∈ X , y ∈ Y,

with variables x ∈ Rn and y ∈ Rm, where f : Rn → R and
g : Rm → R are convex functions, A ∈ Rp×n and B ∈ Rp×m
are matrices, X and Y are nonempty compact convex subsets
of Rn and Rm, respectively. Note that f(·) and/or g(·) are not
assumed to be strictly convex.

The augmented Lagrangian for problem (12) is

Lρ(x, y, λ) = f(x) + g(y) + λT (Ax+By − c)
+ (ρ/2)‖Ax+By − c‖22,

where λ ∈ Rp is the Lagrange multiplier (or the dual variable)
for the equality constraint, and ρ > 0 is the penalty parameter.
Clearly, L0 is the (standard) Lagrangian for (12), and Lρ is the
sum of L0 and a penalty term (ρ/2)‖Ax+By − c‖22.

The standard ADMM algorithm solves problem (12) with
the iterations:

xk+1 := argmin
x∈X

Lρ(x, y
k, λk),

yk+1 := argmin
y∈Y

Lρ(x
k+1, y, λk),

λk+1 := λk + ρ(Axk+1 +Byk+1 − c),

where the penalty parameter ρ can be viewed as the step size
for the update of the dual variable λ. Note that the primal
variables x and y are updated in an alternating fashion, which
accounts for the term alternating direction.

To better understand the standard ADMM, we can com-
pare it to the dual-decomposition algorithm for the following
optimization problem

minimize f(x) + g(y) +
ρ

2
‖Ax+By − c‖22 (13)

subject to Ax+By = c,

x ∈ X , y ∈ Y,

with the iterations(
xk+1, yk+1

)
:= argmin

x∈X ,y∈Y
L(x, y, λk),

λk+1 := λk + ρ(Axk+1 +Byk+1 − c).

The key difference is that ADMM updates the primal variables
x and y alternatively, whereas dual decomposition updates
x and y jointly. Intuitively, the alternating update in ADMM
reduces the complexity, and the extra term (ρ/2)‖Ax+By−c‖22
stabilizes the iterations.

The standard ADMM algorithm has a scaled form, which is
often more convenient (and will be used in this paper). Intro-
ducing u = (1/ρ)λ and combining the linear and quadratic
terms in the augmented Lagrangian, we can express the
ADMM algorithm as

xk+1 := argmin
x∈X

(
f(x) + (ρ/2)‖Ax+Byk − c+ uk‖22

)
,

yk+1 := argmin
y∈Y

(
g(y) + (ρ/2)‖Axk+1 +By − c+ uk‖22

)
,

uk+1 := uk +Axk+1 +Byk+1 − c.

Applying this algorithm to problem (1), we obtain the
following algorithm:

Algorithm 3.2. Initialize {x0i }, {y0j }, {u0j}. For k = 0, 1, . . . ,
repeat

1) x-update: The users jointly solve the following prob-
lem for {xk+1

i }:

min −
N∑
i=1

fi(xi) + (ρ/2)‖
∑
i

xi − yk + uk‖22

s.t. ∀i : xi ∈ Xi.

2) y-update: Each facility j solves the following sub-
problem for yk+1

j :

min gj(yj) + (ρ/2)

(
N∑
i=1

xk+1
ij − yj + ukj

)2

s.t. yj ∈ Yj .

3) Dual update: Each facility j updates uk+1
j :

uk+1
j := ukj +

N∑
i=1

xk+1
ij − yk+1

j .

It is known that Algorithm 3.2 is convergent under As-
sumption 3.1. Thus, it solves the oscillation problem of
dual decomposition. However, the x-update requires all the
users to solve a joint optimization due to the penalty term
(ρ/2)‖

∑
i xi − yk + uk‖22, which is undesirable for large-scale

systems. By contrast, the x-update in dual decomposition can
be performed independently by the users.

3.2 Distributed ADMM Algorithms

We now present two distributed ADMM algorithms, as well as
their convergence analysis. Both algorithms can be viewed as
variants of the standard ADMM algorithm.

3.2.1 An overlooked algorithm

The first algorithm was proposed in [6, Chapter 7], but was
somehow overlooked by networking researchers.

Algorithm 3.3. Initialize {x0i }, {y0j }, {u0j}. For k = 0, 1, . . . ,
repeat

1) x-update: Each user i solves the following sub-problem
for xk+1

i :

min − fi(xi) + (ρ/2)‖xi − xki + dk‖22
s.t. xi ∈ Xi,

where dk , (1/N)
(
uk +

∑N
i=1 x

k
i − yk

)
.

2) y-update: Each facility j solves the following sub-
problem for yk+1

j :

min gj(yj) + (ρ/2N)

(
yj −

N∑
i=1

xk+1
ij − ukj

)2

s.t. yj ∈ Yj .

3) Dual update: Each facility j updates uk+1
j :

uk+1
j := ukj +

N∑
i=1

xk+1
ij − yk+1

j .

FENG ET. AL.: AN ALTERNATING DIRECTION METHOD APPROACH TO CLOUD TRAFFIC MANAGEMENT 7

3.2.2 A new algorithm

The second algorithm switches the order of x-update and y-
update, leading to a new set of convergence conditions that
complements those for Algorithm 3.3.

Algorithm 3.4. Initialize {x0i }, {y0j }, {u0j}. For k = 0, 1, . . . ,
repeat

1) y-update: Each facility j solves the following sub-
problem for yk+1

j :

min gj(yj) + (ρ/2N)

(
yj −

N∑
i=1

xkij − ukj

)2

s.t. yj ∈ Yj .

2) x-update: Each user i solves the following sub-problem
for xk+1

i :

min − fi(xi) + (ρ/2)‖xi − xki + dk‖22
s.t. xi ∈ Xi,

where dk , (1/N)
(
uk +

∑N
i=1 x

k
i − yk+1

)
.

3) Dual update: Each facility j updates uk+1
j :

uk+1
j := ukj +

N∑
i=1

xk+1
ij − yk+1

j .

Clearly, Algorithm 3.3 and Algorithm 3.4 enjoy the best
of both worlds: independent x-updates by the users and con-
vergence of primal variables. As such, they indeed overcome
the shortcomings of dual decomposition and Algorithm 3.2.
More interestingly, they are complementary to each other with
respect to the rate of convergence, as we will see in later
sections.

3.2.3 Connection to the standard ADMM

The connection between Algorithm 3.3 and the standard
ADMM was first noted in [6, Chapter 7], which is provided
below for completeness. The key idea is to introduce auxiliary
variables and make a clever use of the structure of dual
variables.

We write x = (xT1 , . . . , x
T
N)T , f(x) = −

∑N
i=1 fi(xi), y =

(y1, . . . , yn)
T , and g(y) =

∑n
j=1 gj(yj). Then, problem (1) can

be rewritten as:

minimize f(x) + g(y) (14)
subject to Ax = y

x ∈ X , y ∈ Y,

where the matrix A = [I, . . . , I] (I is the n×n identity matrix).
Next, we introduce a set of auxiliary variables zi = xi, and

reformulate problem (1) as:

maximize
N∑
i=1

fi(xi)− g(
N∑
i=1

zi) (15)

subject to ∀i : xi = zi

∀i : xi ∈ Xi;
N∑
i=1

zi ∈ Y.

Applying the scaled form of ADMM to problem (15), we
obtain the following iterations:

xk+1
i := argmin

xi∈Xi

(
−fi(xi) + (ρ/2)‖xi − zki + vki ‖22

)
zk+1 := argmin

(
∑

i zi)∈Y

(
g(

N∑
i=1

zi) + (ρ/2)
N∑
i=1

‖zi − xk+1
i − vki ‖22

)
vk+1
i := vki + xk+1

i − zk+1
i .

We will show that the above iterations are equivalent to Algo-
rithm 3.3. The key observation is that the dual variables vki are
equal for all the users, i.e., ∀i : vki = vk.

Let uk ,
∑N
i=1 v

k
i = Nvk and yk ,

∑N
i=1 z

k
i . Then, the

dual update can be rewritten as

uk+1 := uk +
∑
i

xk+1
i − yk+1,

which is exactly the dual update in Algorithm 3.3.
Substituting vk = vk−1 + xki − zki and

vk = vk−1 + (1/N)

(∑
i

xki − yk
)

in the x-update gives

xk+1
i := argmin

xi∈Xi

(
−fi(xi) + (ρ/2)‖xi − xki + dk‖22

)
,

which is exactly the x-update in Algorithm 3.3.
Finally, substituting

zk+1
i − xk+1

i − vki = −vk+1 = (1/N)

(
yk+1 −

∑
i

xk+1
i − uk

)
in the z-update gives

yk+1 := argmin
y∈Y

g(y) + (ρ/2N)‖y −
∑
i

xk+1
i − uk‖22,

which is precisely the y-update in Algorithm 3.3. Hence, Algo-
rithm 3.3 is indeed a variant of the standard ADMM algorithm.

Similarly, we can show that Algorithm 3.4 is equivalent to
the following iterations:

zk+1 := argmin
(
∑

i zi)∈Y

(
g(

N∑
i=1

zi) + (ρ/2)
N∑
i=1

‖zi − xki − vki ‖22

)
xk+1
i := argmin

xi∈Xi

(
−fi(xi) + (ρ/2)‖xi − zk+1

i + vki ‖22
)

vk+1
i := vki + xk+1

i − zk+1
i

which can be viewed as the scaled form of ADMM with the
order of x-update and z-update switched.

3.2.4 Convergence analysis
We characterize the convergence rates of Algorithms 3.3 and
3.4 by making use of several very recent results [12], [21],
[22] on ADMM. Note that these rate-of-convergence results are
absent in [6, Chapter 7] (which only proves the convergence of
Algorithms 3.3).

It turns out that both algorithms have an O(1/k) rate
of convergence for the general case. Moreover, if the cost
functions gj(·) are strictly convex and their gradients ∇gj(·)
are Lipschitz continuous, Algorithm 3.3 achieves linear con-
vergence, i.e., convergence at rate O(1/ak) for some a > 1.
Similarly, if the utility functions fi(·) are strictly concave and

8 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 201X

TABLE 1
Convergence rates of Algorithms 3.3 and 3.4.

Lipschitz Recommended
Case Strictly convex continuous algorithms Rate

1 none none Alg. 3.3 or 3.4 O(1/k)
2 {gj} {∇gj} Alg. 3.3 O(1/ak)
3 {−fi} {∇fi} Alg. 3.4 O(1/ak)
4 {−fi}, {gj} {∇fi}, {∇gj} Alg. 3.3 or 3.4 O(1/ak)

their gradients ∇fi(·) are Lipschitz continuous, Algorithm 3.4
achieves linear convergence. Hence, Algorithms 3.3 and 3.4
naturally complement each other, as summarized in Table 1.

Let us formally state the rate-of-convergence results pre-
sented in Table 1. Without loss of generality, we mostly focus
on Algorithm 3.3.

Let ({x∗i }, {z∗i }) be a primal optimal solution to problem
(15) (in particular, we have x∗i = z∗i), and {λ∗i } be a dual op-
timal solution. (The existence of {λ∗i } follows from the strong
duality theorem.) Let v∗i = λ∗i /ρ. Then, Propositions 3.1 and
3.2 establish the rate-O(1/k) and rate-O(1/ak) convergences
for Algorithm 3.3, respectively.
Proposition 3.1. Let {{xki }, yk, uk} be any sequence generated

by Algorithm 3.3. Let vk = uk/N and zki = xki + vk−1− vk.
Let

V k =
N∑
i=1

(
‖zki − z∗i ‖22 + ‖vk − v∗i ‖22

)
, (16)

and

Dk =
N∑
i=1

(
‖zk+1
i − zki ‖22 + ‖vk+1 − vk‖22

)
. (17)

Then starting with any initial point {{x0i }, y0, u0}, Dk is
non-increasing, and Dk ≤ V 0/(k + 1) for all k.

Remark 3.1. Proposition 3.1 has an important implication. It
suggests that the sequence {Dk} can be used as a natural
stopping rule for Algorithm 3.3, which decreases at rate
1/k. This stopping rule is more rigorous compared to that in
[6, Chapter 7], since their stopping rule is based on heuristic
principles. For example, their stopping-rule sequence does
not have the non-increasing property and may fluctuate
over iterations.

Proposition 3.2. Let {{xki }, yk, uk} be any sequence generated
by Algorithm 3.3. Let V k be the Lyapunov function defined
in (16). Assume that the cost functions gj(·) are strictly
convex with Lipschitz continuous gradients. Then starting
with any initial point {{x0i }, y0, u0}, there exists some δ > 0
such that V k ≤ V 0/(1 + δ)k for all k.

Remark 3.2. Proposition 3.2 provides a guideline for choosing
the penalty parameter ρ. In particular, one can show that the
parameter δ = min{c9/ρ, c11ρ}, where c9 and c11 are given
in [12]. Hence, ρ can be chosen such that the parameter δ is
maximized.

The proofs of Propositions 3.1 and 3.2 are slight modifi-
cations of those presented in [12], [21], [22]2. Note that both
algorithms use a single parameter ρ, which is easier to tune than

2. We do not provide the proofs here, but could include them upon
editor’s request.

dual decomposition with varied step sizes. This is desirable for
practical implementation.

3.3 Parallel Implementation
Here, we discuss how the above two algorithms can be effec-
tively implemented on parallel processors in a cloud environ-
ment. with a particular focus on Algorithm 3.3, since the same
discussion applies to Algorithm 3.4.

We associate each user a processor, which stores and main-
tains two states (xki , d

k). Similarly, we associate each facility a
processor, which stores and maintains (ukj ,

∑
i x

k+1
ij). At the k-

th iteration, each user’s processor solves a small-scale convex
problem (in n variables), and then reports the updated xk+1

ij to
facility j. Each facility j collects these xk+1

ij from all the users,
and then computes the sum

∑
i x

k+1
ij . This is called a reduce step

in parallel computing [11]. After the reduce step, each facility’s
processor solves a single-variable convex problem for yk+1

j and
updates uk+1

j . Then, each facility’s processor sends the value

of dk+1
j , (1/N)

(
uk+1
j +

∑
i x

k+1
ij − yk+1

j

)
to all the users,

which is called a broadcast step. Hence, each iteration consists
of a reduce step and a broadcast step, performing message-
passing between users and facilities.

An alternative and perhaps simpler method to implement
Algorithm 3.3 is based on the MPI Allreduce operation [44],
which computes the global sum over all processors and dis-
tributes the result to every processor. Although the Allreduce
operation can be achieved by a reduce step followed by a
broadcast step, an efficient implementation (for example, via
butterfly mixing [51]) often leads to much better performance.
With the help of Allreduce, we only need N processors, with
each storing and maintaining three states (xki , u

k,
∑
i x

k
i). At

the k-th iteration, each processor solves a small convex prob-
lem and updates xk+1

i . Then, all the processors perform an
Allreduce operation so that all of them (redundantly) obtain∑
i x

k+1
i . After this Allreduce step, each processor solves n

single-variable convex problems and (redundantly) computes
uk+1. Clearly, this method simplifies the implementation and
can potentially increase the speed.

With respect to the communication overhead, it increases
with N , the number of users. Note that the communication
overhead per user only depends on the number of iterations,
because each user just needs to send one message and receive
one message from a facility during each iteration. Fortunately,
the number of iterations is insensitive to the system size (as we
will see in Sec. 4). Thus, the communication overhead per user
is insensitive to the system size as well.

On the other hand, the communication overhead per facility
is sensitive to the system size, because each facility needs to
wait for the messages from all the users during each iteration.
The “slow” users (often called the “stragglers” in the literature)
would become the communication bottleneck in each iteration.
To mitigate this issue, we propose the following strategy:
each facility simply reuses the previous messages from those
stragglers rather than waiting for their current messages. In
this way, those stragglers will no longer be the bottleneck.
This strategy will be formally introduced in our fault-tolerance
model in Sec. 4.4. Surprisingly, our experimental results sug-
gest that even if each facility gives up the slowest 10% of users
at each iteration and treats them as stragglers, the convergence
behaviour of our algorithms is still very close to the case
where each facility waits for all the users. This means that the

FENG ET. AL.: AN ALTERNATING DIRECTION METHOD APPROACH TO CLOUD TRAFFIC MANAGEMENT 9

communication overhead per facility can be well controlled as
the system size grows.

3.4 Comparisons with Other Algorithms

As we explained before, Algorithms 3.3 and 3.4 successfully
overcome the shortcomings of dual decomposition and stan-
dard ADMM (i.e., Algorithm 3.2). Here, we will highlight their
clear advantages over several other ADMM-based algorithms.

First, compared to our previous ADMM-based algorithms
[47]–[49], Algorithms 3.3 and 3.4 enjoy a number of unique
strengths. For example, the algorithm in [49] requires all cost
functions gj(·) to be linear, because otherwise Lemma 1 in [49]
no longer holds and so each facility has to solve a large-scale
convex optimization (where the number of variables equals
to the number of users which can be in the order of 105 as
explained before). In sharp contrast, Algorithms 3.3 and 3.4
only require the cost functions gj(·) to be convex, which allows
us to consider a much wider range of cloud applications, such
as backbone traffic engineering. More importantly, although
Algorithms 3.3 and 3.4 have much wider applications, their
computational complexity is still lower than the algorithm
in [49], because each facility here only needs to solve a
single-variable convex optimization. In addition, Algorithm 3.3
achieves linear convergence when the cost functions gj(·) are
strictly convex, whereas no such rate-of-convergence results
are available in [49]. To sum up, Algorithms 3.3 and 3.4 have
wider applications, lower complexity and rate-of-convergence
guarantees compared to the algorithm in [49].

Similarly, compared to our previous algorithms [47], [48]
(which require strictly convex objective functions and bounded
level sets), Algorithms 3.3 and 3.4 achieve faster convergence,
even under weaker technical assumptions and with lower
computational complexity and message-passing overhead.

There are some other ADMM-type distributed algorithms
in the literature, such as linearized ADMM [21] and multi-
block ADMM [20], [25]. However, they are not particularly
suitable for the multi-facility resource allocation problem (1).
For example, applying linearized ADMM to problem (1) gives
the following iterations:

xk+1
i := argmin

xi∈Xi

(
−fi(xi) + xTi g

k + (r/2)‖xi − xki ‖22
)

yk+1
j := argmin

yj∈Yj

(
gj(yj) + (ρ/2)(yj −

N∑
i=1

xk+1
ij − ukj)2

)

uk+1
j := ukj +

N∑
i=1

xk+1
ij − yk+1

j ,

where gk = ρ(
∑
i x

k
i − yk + uk) linearizes the penalty term

(ρ/2)‖
∑
i xi − y‖22, and (r/2)‖xi − xki ‖22 is a proximal term.

Although the above algorithm preserves separability of the
problem, its convergence requires r > ρN . When N is suf-
ficiently large, the x-update in each iteration just slightly
changes xi (due to a large r), making the convergence slow.
Hence, linearized ADMM is not well suited for large-scale
problems.

Multi-block ADMM is another candidate for solving prob-
lem (1). However, it generally requires users to solve their sub-
problems sequentially rather than in parallel. Moreover, it still
lacks theoretical convergence guarantees for the general case.
Indeed, a counter-example has recently been reported showing

the impossibility of convergence of multi-block ADMM for the
general case [8], [31].

The algorithms presented in [46] are most similar to ours.
Their basic idea is also to apply variants of the standard
ADMM algorithm to solve separable convex problems. How-
ever, their algorithms require the utility functions to be strictly
concave and the cost functions to be strictly convex in order
to achieve O(1/ak) rate of convergence. Such requirements
cannot be met in some application scenarios. One such example
is backbone traffic engineering, as we will discuss in Sec. 2.

4 EMPIRICAL STUDY

We present our empirical study of the performance of the
distributed ADMM algorithms. For this purpose, it suffices
to choose one of the two cloud traffic management problems
since they are equivalent in nature. We use the geographical
load balancing problem (2) with the utility and cost functions
(5) and (6) as the concrete context of the performance evalua-
tion. This problem corresponds to the most general case (i.e.,
case 1 in Table 1), since (5) is non-strictly concave and (6) is
non-strictly convex. Thus it can be solved using either Algo-
rithm 3.3 or Algorithm 3.4. We use Algorithm 3.3 in all of our
simulations. Note that if the objective function exhibits strict
convexity, better simulation results can be obtained according
to Proposition 3.2. In other words, we mainly focus on the
“worse-case” performance of the algorithms in this section. We
plan to make all our simulation codes publicly available after
the review cycle.

We implement Algorithm 3.3 in Matlab in a sequential
manner to evaluate its convergence behaviour. Note that the
convergence time is equal to the product of the number of
iterations and the time spent on each iteration, where the
number of iterations is independent of specific platforms used
for implementation, and the time for each iteration depends
heavily on specific implementation platforms. As such, we
mostly focus on the platform-independent metric: the number
of iterations. It turns out that this metric is insensitive to the
scale of the system, as we will soon see.

4.1 Setup
We randomly generate each user’s request demand ti, with an
average of 9 × 104. We then normalize the workloads to the
number of servers, assuming each request requires 10% of a
server’s CPU. We assume the prediction of request demand is
done accurately since prediction error is immaterial to perfor-
mance of the optimization algorithms. The latency lij between
an arbitrary pair of user and data center is randomly generated
between 50 ms and 100 ms.

We set the number of data centers (facilities) n = 10. Each
data center’s capacity cj is randomly generated so that the total
capacity

∑
j cj is 1.4x the total demand. We use the 2011 annual

average day-ahead on peak prices [15] at 10 different local
markets as the power prices Pj for data centers. The servers
have peak power Ppeak = 200 W, and consume 50% power at
idle. The PUE is 1.5. These numbers represent state-of-the-art
data center hardware [14], [43].

We set the penalty parameter ρ of the ADMM algo-
rithm to ρ = 10−3 after an empirical sweep of ρ ∈
{10−4, 10−3, . . . , 103, 104}. Although a more fine-grained
search for ρ can further improve the performance of our
algorithms, we confine ourselves to the above 9 choices to
demonstrate the practicality.

10 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 201X

4.2 Failure of Centralized Solvers

First of all, to motivate the need of distributed algorithms, we
run experiments with state-of-the-art centralized solvers under
the previous setup, and show that they cannot be readily used
to solve traffic management problems in a large scale. We use
the quadprog solver in Matlab 2014b with the active-set
algorithm. The solver runs on a linux server with an 8-core
Intel Xeon E5-2640v2 2.0GHz CPU and 32GB memory. We set
maxIter, the maximum number of iterations, to 2000 because
the default value of 500 is too small for our problems.

We find that, when number of users N is 102, the cen-
tralized solver takes ∼226.5s to terminate; when N = 103,
the centralized solver runs for more than 16 hours without
solving the problem; when N = 104, Matlab reports out of
memory due to the huge number of variables and constraints.
This clearly shows that it is practically infeasible to resort to
a centralized solver to handle large-scale problems. Even for
giant companies like Google with a computer say 100 times
faster than our server, it takes at least 9.6 minutes to solve the
problem with N = 104, which is still too slow for practical use.
In reality N can be even larger which makes things even more
difficult. Thus we believe it is necessary to adopt distributed
solution algorithms.

4.3 Convergence and Scalability

We now evaluate the convergence of Algorithm 1 under the
previous setup. We vary the problem size by changing the
number of users N ∈ {102, 103, 104, 105} and scaling data cen-
ter capacities linearly with N . We observe that our algorithm
converges quickly after 50 iterations in all cases, independent of
the problem size.

0 100 200 300 400
0.8

0.9

1

1.1

iter (k)

O
bj

. v
al

ue
 (

10
4)

N=102

Fig. 3. Objective value. N = 102.

0 100 200 300 400
100

102

104

106

108

10-1

101

103

105

107

109

Dk

Primal residual

Fig. 4. Dk and primal residual. N =
102.

0 100 200 300 400
102

104

106

108

1010

103

105

107

109

1011

1013

Dk

Primal residual

Fig. 5. Objective value. N = 104.

0 100 200 300 400
102

104

106

108

1010

103

105

107

109

1011

1013

Dk

Primal residual

Fig. 6. Dk and primal residual. N =
104.

Convergence of objective functions. Figure 3 and 5 plot
the convergence of objective values for N = 102 and N =
104, respectively. Notice that the objective values for N = 104

are roughly 100 times the corresponding values for N = 102

at each iteration. This means that our algorithm has excellent

scalability, which is very helpful in practice. Since the number
of iterations is independent of the problem size, it suggests that
our algorithm can solve a large-scale problem with (almost) the
same running time by simply scaling the amount of computing
resources linearly with the number of users.

Convergence of Dk. Figure 4 and 6 show the trajectory of
Dk as defined in (17) for N = 102 and N = 104, respectively.
We observe that Dk is indeed non-increasing in both cases.
Further, the two figures are in log scale, implying that Dk

decreases sublinearly, which confirms Proposition 3.1 for the
O(1/k) convergence rate. In addition, one can see that Dk

scales linearly with N as expected from its definition. This
implies that Dk is an ideal candidate for the stopping rule: the
algorithm can be terminated when Dk/N is below a certain
threshold.

Convergence of primal residuals. Figure 4 and 6 show the
trajectory of the primal residual, which is defined as

∑N
i ‖xi−

zi‖22 here. It reflects how well the constraints {xi = zi} are
satisfied, and is sometimes called the primal feasibility gap.
For example, if the primal residual is 104 for N = 102 (or, 106

for N = 104), then on average each ‖xi − zi‖ is around 10,
which is already small enough since xi is in the order of 104.
Hence, we conclude that the constraints are well satisfied after
50 iterations in both cases.

4.4 Fault-tolerance

We have observed that our algorithms converge fast to the
optimal solution for large-scale problems. Yet, because fail-
ures are the norm rather than the exception, fault-tolerance
is arguably the most important design objective for parallel
computing frameworks that involve a large number of servers
currently [11]. A parallel algorithm that is inherently robust
against failures in the intermediate steps is highly desirable for
practical deployment. To investigate the fault-tolerance of our
algorithm, we carry out a new set of simulations where each
user fails to update xki with a probability p at each iteration
(independent of each other). Whenever a failure happens, user
i simply reuses its previous solution by setting xk+1

i := xki .
This failure model can be used to capture several practical

scenarios. For example, if user i experiences a temporary
failure at iteration k+1, it can simply report its previous value
xki to all the facilities. In addition, under this model, a facility
doesn’t have to wait until it collects the updates from all the
users. Instead, it can simply reuse xki for some “slow” users
(perhaps due to temporary network congestion) and treat those
users as failures. In this way, those slow users are no longer the
bottleneck.

Figure 7–9 plot the convergence with different failure
probabilities for N = 102, and Figure 10–12 for N = 104.
Specifically, Figure 7 and 10 plot the relative error in objective
value with failures (i.e. OBJ FAIL/OBJ − 1, where OBJ FAIL
is the objective value with failures, and OBJ is the objective
value when every step is solved correctly). We observe that
increasing the failure probability from 5% to 10% increases the
relative error, causing the solution quality to degrade at the
early stage. Yet surprisingly, the impact is very insignificant:
The relative error is at most 1.5%, and ceases to 0 after 100
iterations. In fact, after 50 iterations the relative error is only
around 0.2% for both problem sizes.

Moreover, failures do not affect the convergence of the
algorithm at all. This is indicated by the relative error plots,

FENG ET. AL.: AN ALTERNATING DIRECTION METHOD APPROACH TO CLOUD TRAFFIC MANAGEMENT 11

0 100 200 300 400
0

0.005

0.01

0.015

0.02

iter (k)

R
el

at
iv

e
er

ro
r

in
 o

bj
. v

al
ue

Prob. failure = 5%
Prob. failure = 10%

Fig. 7. Relative errors in objective value. N = 102.

0 100 200 300 400
10

0

10
2

10
4

10
6

10
8

iter (k)

D
k

Prob. failure = 0
Prob. failure = 5%
Prob. failure = 10%

Fig. 8. Dk. N = 102.

0 100 200 300 400
10

−1

10
1

10
3

10
5

10
7

10
9

iter (k)

P
rim

al
 r

es
id

ua
l

Prob. failure = 0
Prob. failure = 5%
Prob. failure = 10%

Fig. 9. Primal residual. N = 102.

0 100 200 300 400
0

0.005

0.01

0.015

iter (k)

R
el

at
iv

e
er

ro
r

in
 o

bj
. v

al
ue

Prob. failure = 5%
Prob. failure = 10%

Fig. 10. Relative errors in objective value. N =
104.

0 100 200 300 400
10

2

10
4

10
6

10
8

10
10

iter (k)

D
k

Prob. failure = 0
Prob. failure = 5%
Prob. failure = 10%

Fig. 11. Dk. N = 104.

0 100 200 300 400
10

3

10
5

10
7

10
9

10
11

10
13

iter (k)

Pr
im

al
 r

es
id

ua
l

Prob. failure = 0
Prob. failure = 5%
Prob. failure = 10%

Fig. 12. Primal residual. N = 104.

and further illustrated by the overlapping curves in Figure 8,
9, 11, and 12 for Dk and primal residual.

Thus, we find that our distributed ADMM algorithms are
inherently fault-tolerant, with less than 1% optimality loss and
essentially the same convergence speed for up to 10% failure
rate. They are robust enough to handle temporary failures that
commonly occur in production systems.

4.5 Comparison with Dual Decomposition

We also simulate the conventional dual decomposition ap-
proach with subgradient methods as explained in Sec. 3.4
to solve problem (2). The step size ρk is chosen following
the commonly accepted diminishing step size rule [5], with
ρk = 10−5/

√
k.

We plot the trajectory of objective values in Figure 13, and
that of primal residuals in Figure 14. Compare to Algorithm 1,
dual decomposition yields wildly fluctuating results. Though
the objective value decreases to the same level as Algorithm 1
after about 200 iterations, the more meaningful primal vari-
ables {xi} never converge even after 400 iterations. One can
see from Figure 14 that the primal residual does not decrease
below 107. This implies that the equality constraints {xi = zi}
are not well-satisfied during the entire course, and the primal
variables {xi} still violate the capacity constraints after 400
iterations.

This phenomenon is due to the oscillation problem [32] when
dual decomposition method is applied to non-strictly convex
objective functions. To mitigate this problem, one can make the
objective function strictly convex by adding a small penalty
term, e.g., ρ1‖x‖22 + ρ2‖z‖22). Nevertheless, we found that
the primal variables {xi} still converge very slowly after an
extensive trial of different (ρ1, ρ2).

0 100 200 300 400
0.8

0.9

1

1.1

O
bj

. v
al

ue
 (

10
4)

iter (k)

Dual decomp.
ADMM

Fig. 13. Objective value. N = 102.

0 100 200 300 400
10

−1

10
1

10
3

10
5

10
7

10
9

10
11

pr
im

al
 r

es
id

ua
l

iter (k)

Dual decomp.
ADMM

Fig. 14. Primal residual. N = 102.

To summarize, our simulation results confirm our theoreti-
cal analysis, demonstrate fast convergence of our algorithms in
various settings, and highlight several additional advantages,
especially the scalability and fault-tolerance.

5 RELATED WORK

5.1 Network Utility Maximization

Network utility maximization (NUM) [3], [45] is closely related
to our multi-facility resource allocation problem. A standard
technique for solving NUM problems is dual decomposition.
Dual decomposition was first applied to the NUM problem in
[28], and has lead to a rich literature on distributed algorithms
for network rate control [9], [36], [41] and new understandings
of existing network protocols [35]. Despite its popularity, dual
decomposition requires a delicate adjustment of the step-size
parameters, which are often difficult to tune. In addition, dual
decomposition requires the utility functions to be strictly con-
cave and the cost functions to be strictly convex. Our ADMM-
type algorithms overcome these difficulties, achieving faster

12 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 201X

convergence under weaker assumptions as discussed in Sec. 3.4
in detail.

5.2 Cloud Traffic Management
Cloud service providers operate two distinct types of WANs:
user-facing WANs and backbone WANs [27]. The user-facing
WAN connects cloud users and data centers by peering and ex-
changing traffic with ISPs. Through optimized load balancing,
this type of networks can achieve a desired trade-off between
performance and cost [17], [33], [34], [43], [47]–[49]. The back-
bone WAN provides connectivity among data centers for data
replication and synchronization. Rate control and multi-path
routing [18], [24], [27] can significantly increase link utilization
and reduce operational costs of the network. Previous work
developed different optimization methods for each applica-
tion scenario separately, whereas our work provides a unified
framework well suited to a wide range of network scenarios.
More importantly, our approach achieves faster convergence
than prior art, even under weaker assumptions and with lower
computational complexity and message passing overhead, as
discussed thoroughly in Section 3.4.

6 CONCLUSION

In this work, we have introduced a general framework for
studying various cloud traffic management problems. We have
abstracted these problems as a multi-facility resource allocation
problem and presented two distributed algorithms based on
ADMM that are amenable to parallel implementation. We
have provided the convergence rates of our algorithms under
various scenarios. When the utility functions are non-strictly
concave and the cost functions are non-strictly convex, our al-
gorithms achieve O(1/k) rate of convergence. When the utility
functions are strictly concave or the cost functions are strictly
convex, our algorithms achieve O(1/ak) rate of convergence.

We have shown that, compared to dual decomposition
and other ADMM-type distributed solutions, our algorithms
have a number of unique advantages, such as achieving faster
convergence under weaker assumptions, and enjoying lower
computational complexity and lower message-passing over-
head. These advantages are further confirmed by our extensive
empirical studies. Moreover, our simulation results demon-
strate some additional advantages of our algorithms, including
the scalability and fault-tolerance, which we believe are highly
desirable for large-scale cloud systems.

REFERENCES

[1] S. Agarwal, M. Kodialam, and T. V. Lakshman. Traffic engineering in
software defined networks. In Proc. IEEE INFOCOM, 2013.

[2] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron. Towards
predictable datacenter networks. In Proc. ACM SIGCOMM, 2011.

[3] D. P. Bertsekas. Network Optimization: Continuous and Discrete Models.
Athena Scientific, 1998.

[4] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation:
Numerical Methods. Athena Scientific, 1997.

[5] S. Boyd and A. Mutapcic. Subgradient methods. Lecture notes of
EE364b, Stanford University, Winter Quarter 2006-2007. http://www.
stanford.edu/class/ee364b/notes/subgrad method notes.pdf.

[6] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed
optimization and statistical learning via the alternating direction
method of multipliers. Foundations and Trends in Machine Learning,
3(1):1–122, 2010.

[7] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and
J. van der Merwe. Design and implementation of a routing control
platform. In Proc. USENIX NSDI, 2005.

[8] C. Chen, B. He, Y. Ye, and X. Yuan. The direct extension of ADMM
for multi-block convex minimization problems is not necessarily
convergent. Mathematical Programming, 155(1):57–59, January 2016.

[9] M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle. Layering
as optimization decomposition: A mathematical theory of network
architectures. Proc. IEEE, 95(1):255–312, January 2007.

[10] E. Danna, S. Mandal, and A. Singh. A practical algorithm for
balancing the max-min fairness and throughput objectives in traffic
engineering. In Proc. IEEE INFOCOM, 2012.

[11] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on
large clusters. In Proc. OSDI, 2004.

[12] W. Deng and W. Yin. On the global and linear convergence of the
generalized alternating direction method of multipliers. Technical
report, Department of Computational and Applied Mathematics, Rice
University, 2012.

[13] A. Elwalid, C. Jin, S. H. Low, and I. Widjaja. Mate: Mpls adaptive
traffic engineering. In Proc. IEEE INFOCOM, 2001.

[14] X. Fan, W.-D. Weber, and L. A. Barroso. Power provisioning for a
warehouse-sized computer. In Proc. ISCA, 2007.

[15] Federal Energy Regulatory Commission. U.S. electric power
markets. http://www.ferc.gov/market-oversight/mkt-electric/
overview.asp, 2011.

[16] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan, D. Moll, R. Rockell,
T. Seely, and S. Diot. Packet-level traffic measurements from the Sprint
IP backbone. IEEE Netw., 17(6):6–16, November 2003.

[17] P. X. Gao, A. R. Curtis, B. Wong, and S. Keshav. It’s not easy being
green. In Proc. ACM SIGCOMM, 2012.

[18] A. Ghosh, S. Ha, E. Crabbe, and J. Rexford. Scalable multi-class traffic
management in data center backbone networks. IEEE J. Sel. Areas
Commun., 31(12):1–12, December 2013.

[19] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford,
G. Xie, H. Yan, J. Zhan, and H. Zhang. A clean slate 4D approach
to network control and management. ACM SIGCOMM Comput.
Commun. Rev., 35(5):41–54, October 2005.

[20] D. Han and X. Yuan. A note on the alternating direction method of
multipliers. J. Optim. Theory Appl., 155:227–238, 2012.

[21] B. He and X. Yuan. On non-ergodic convergence rate of Douglas-
Rachford alternating direction method of multipliers. Technical re-
port, 2012.

[22] B. He and X. Yuan. On the o(1/n) convergence rate of the Douglas-
Rachford alternating direction method. SIAM J. Num. analysis, 50:700–
709, 2012.

[23] M. R. Hestenes. Multiplier and gradient methods. Journal of Optimiza-
tion Theory and Applications, 4(5):303–320, 1969.

[24] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer. Achieving high utilization with software-driven
WAN. In Proc. ACM SIGCOMM, 2013.

[25] M. Hong and Z.-Q. Luo. On the linear convergence of the alternating
direction method of multipliers. http://arxiv.org/abs/1208.3922,
August 2012.

[26] M. Hong, Z.-Q. Luo, and M. Razavlyayn. Convergence analysis of
alternating direction method of multiplies for a family of nonconvex
problems. SIAM J. Optim., 26(1):337–364, 2016.

[27] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart,
and A. Vahdat. B4: Experience with a globally-deployed software
defined WAN. In Proc. ACM SIGCOMM, 2013.

[28] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan. Rate control for
communication networks: Shadow prices, proportional fairness and
stability. J. Operat. Res. Soc., 49(3):237–252, March 1998.

[29] R. Kohavi, R. M. Henne, and D. Sommerfield. Practical guide to
controlled experiments on the web: Listen to your customers not to
the hippo. In Proc. ACM SIGKDD, 2007.

[30] W.-C. Liao, M. Hong, H. Farmanbar, X. Li, Z.-Q. Luo, and H. Zhang.
Min flow rate maximization for software defined radio access net-
works. IEEE J. Sel. Areas Commun., 32(6):1282–1294, June 2014.

[31] T. Lin, S. Ma, and S. Zhang. On the global linear convergence of the
admm with multiblock variables. SIAM J. Optim., 25(3):1478–1497,
2015.

[32] X. Lin and N. B. Shroff. Utility maximization for communication net-
works with multi-path routing. IEEE Trans. Autom. Control, 51(5):766–
781, May 2006.

[33] Z. Liu, Y. Chen, C. Bash, A. Wierman, D. Gmach, Z. Wang, M. Mar-
wah, and C. Hyser. Renewable and cooling aware workload manage-
ment for sustainable data centers. In Proc. ACM Sigmetrics, 2012.

[34] Z. Liu, M. Lin, A. Wierman, S. H. Low, and L. L. Andrew. Greening
geographical load balancing. In Proc. ACM Sigmetrics, 2011.

[35] S. H. Low. A duality model of TCP and queue management algo-
rithms. IEEE/ACM Trans. Netw., 11(4):525–536, August 2003.

FENG ET. AL.: AN ALTERNATING DIRECTION METHOD APPROACH TO CLOUD TRAFFIC MANAGEMENT 13

[36] S. H. Low and D. E. Lapsley. Optimization flow control—I: Basic
algorithm and convergence. IEEE/ACM Trans. Netw., 7(6):861–874,
December 1999.

[37] J. Mo and J. Walrand. Fair end-to-end window-based congestion
control. IEEE/ACM Trans. Netw., 8(5):556–567, October 2000.

[38] M. Moshref, M. Yu, R. Govindan, and A. Vahdat. Trumpet: Timely
and precise triggers in data centers. In Proc. ACM SIGCOMM, 2016.

[39] S. Narayana, J. W. Jiang, J. Rexford, and M. Chiang. Distributed wide-
area traffic management for cloud services. In Proc. ACM Sigmetrics,
Extended Abstract, 2012.

[40] E. Nygren, R. K. Sitaraman, and J. Sun. The Akamai network: A
platform for high-performance Internet applications. SIGOPS Oper.
Syst. Rev., 44(3):2–19, August 2010.

[41] D. Palomar and M. Chiang. A tutorial on decomposition methods and
distributed network resource allocation. IEEE J. Sel. Areas Commun.,
24(8):1439–1451, August 2006.

[42] J. Perry, H. Balakrishnan, and D. Shah. Flowtune: Flowlet control for
datacenter networks. In Proc. USENIX NSDI, 2017.

[43] A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, and B. Maggs. Cut-
ting the electricity bill for Internet-scale systems. In Proc. SIGCOMM,
2009.

[44] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI:
The Complete Reference. The MIT Press, 1996.

[45] R. Srikant. The Mathematics of Internet Congestion Control. Birkhäuser,
2004.

[46] X. Wang, M. Hong, S. Ma, and Z.-Q. Luo. Solving multiple-block
separable convex minimization problems using two-block alternating
direction method of multipliers. Technical report, August 2013.

[47] H. Xu, C. Feng, and B. Li. Temperature aware workload management
in geo-distributed datacenters. In Proc. USENIX ICAC, 2013.

[48] H. Xu, C. Feng, and B. Li. Temperature aware workload management
in geo-distributed datacenters. IEEE Trans. Parallel Distrib. Syst.,
26(6):1743–1753, June 2015.

[49] H. Xu and B. Li. Joint request mapping and response routing for
geo-distributed cloud services. In Proc. IEEE INFOCOM, 2013.

[50] Z. Zhang, M. Zhang, A. Greenberg, Y. C. Hu, R. Mahajan, and
B. Christian. Optimizing cost and performance in online service
provider networks. In Proc. USENIX NSDI, 2010.

[51] H. Zhao and J. Canny. Butterfly mixing: Accelerating incremental-
update algorithms on clusters. In Proc. SIAM Int. Conf. Data Mining,
2013.

[52] Z. Zhou, F. Liu, B. Li, B. Li, H. Jin, R. Zou, and Z. Liu. Cell generation
in geo-distributed cloud services: A quantitative study. In Proc. IEEE
ICDCS, 2014.

Chen Feng (S’08–M’14) received the B.Eng. de-
gree from the Department of Electronic and Com-
munications Engineering, Shanghai Jiao Tong Uni-
versity, China, in 2006, and the M.A.Sc. and
Ph.D. degrees from the Department of Electrical
and Computer Engineering, University of Toronto,
Canada, in 2009 and 2014, respectively. From
2014 to 2015, he was a Postdoctoral Fellow with
Boston University, USA, and the École Polytech-
nique Fédérale de Lausanne (EPFL), Switzerland.
He joined the School of Engineering, University of

British Columbia, Kelowna, Canada, in July 2015, where he is currently an
Assistant Professor. His research interests include data networks, coding
theory, information theory, and network coding. Dr. Feng was a recipient
of the prestigious NSERC Postdoctoral Fellowship in 2014. He was recog-
nized by the IEEE TRANSACTIONS ON COMMUNICATIONS (TCOM) as an
Exemplary Reviewer in 2015. Since January 2015, Dr. Feng served as an
Associate Editor for the IEEE COMMUNICATIONS LETTERS. He is a member
of ACM and IEEE.

Hong Xu received the B.Eng. degree from the
Department of Information Engineering, The Chi-
nese University of Hong Kong, in 2007, and the
M.A.Sc. and Ph.D. degrees from the Department
of Electrical and Computer Engineering, University
of Toronto. He joined the Department of Computer
Science, City University of Hong Kong in 2013,
where he is currently an assistant professor. His
research interests include data center networking,
SDN, NFV, and cloud computing. He was the re-
cipient of an Early Career Scheme Grant from the

Research Grants Council of the Hong Kong SAR, 2014. He also received
the best paper awards from IEEE ICNP 2015 and ACM CoNEXT Student
Workshop 2014. He is a member of ACM and IEEE.

Baochun Li received his B.E. degree from the De-
partment of Computer Science and Technology, Ts-
inghua University, China, in 1995 and his M.S. and
Ph.D. degrees from the Department of Computer
Science, University of Illinois at Urbana-Champaign,
Urbana, in 1997 and 2000.

Since 2000, he has been with the Department of
Electrical and Computer Engineering at the Univer-
sity of Toronto, where he is currently a Professor. He
holds the Nortel Networks Junior Chair in Network
Architecture and Services from October 2003 to

June 2005, and the Bell Canada Endowed Chair in Computer Engineering
since August 2005. His research interests include cloud computing, large-
scale data processing, computer networking, and distributed systems. In
2000, Dr. Li was the recipient of the IEEE Communications Society Leonard
G. Abraham Award in the Field of Communications Systems. In 2009, he
was a recipient of the Multimedia Communications Best Paper Award from
the IEEE Communications Society, and a recipient of the University of
Toronto McLean Award. He is a Fellow of IEEE and a member of ACM.

