Understanding the Performance Gap between
Pull-based Mesh Streaming Protocols
and Fundamental Limits

Chen Feng, Baochun Li Bo Li
Dept. of Electrical and Computer Engineering Dept. of Comp&eience
University of Toronto Hong Kong University of Science & Tealogy

Abstract—Pull-based mesh streaming protocols have recently segments ar@ulled from appropriate neighbors, in order to
received much research attention, with successful commercial meet their playback deadlines. Compared to push-based tree
systems showing their viability in the Internet. Despite the strategies, pull-based mesh strategies take advantageeof t

remarkable popularity in real-world systems, the fundamental . . I 1
properties and limitations of pull-based protocols are not yet philosophy thagossipingsegment availability is more resilient

well understood from a theoretical perspective, as there exist t0 peer dynamics and simpler to implement, which is com-
no prior work that studies the performance gap between the monly adopted in BitTorrent-like file swarming systems. How

fundamental limits and the actual performance. In this paper, we ever, such an advantage is achieved at the cost of increased
develop a unified framework based on trellis graph technigues delay of distributing streaming content to all participati

to mathematically analyze and understand the performance of due to del db iodic buff h
pull-based mesh streaming protocols, with a particular focus peers, due 1o aelays caused by periodic bufier map exchanges

on such a performance gap. We show that there exists a[3]. Nevertheless, most real-world systenesg(, PPLive) are
significant performance gap that separates the actual and optiad implemented using pull-based mesh strategies, mainly due t
performance of pull-based mesh protocols. Moreover, periodic their simplicity.

buffer map exchanges account for most of this performance gap Despite the remarkable popularity in real-world systems, a

Our analytical characterization of the performance gap brings us b f fund tal ti I-based h i
not only a better understanding of several fundamental tradetfis UMBPEr OF lundamental questions on pufi-based mesh proto-

in pull-based mesh protocols, but also important insights on COIs are not yet well understood from a theoretical persyect
the design of practical streaming systems that can achieve high What are the fundamental limits of the performance of pull-

streaming rates and short initial buffering delays. based mesh protocols? How large is the gap between the
fundamental limits and the actual performance? What factors
account for most of the gap separating the actual and optimal
Live peer-to-peer (P2P) streaming has recently witnesse@rformance of pull-based mesh protocols? In this paper, we
unprecedented growth on the Internet, delivering livesstre seek to mathematically analyze and understand the perfor-
ing content to millions of users at any given time. The egnance of pull-based mesh protocols, with a particular focus
sential advantage of P2P streaming is to dramatically asme On these important questions. To achieve this objective, we
the number of peers a streaming channel may sustain witAve developed a unified theoretical framework based on the
dedicated streaming servers. Intuitively, as participppeers concept oftrellis graphs[4] and provided a number of new
contribute their upload bandwidth capacities to serve o@@alytical results along this direction.
another in the same channel, the load on dedicated streaminyVith trellis graph techniques that have been traditionally
servers is significantly mitigated. used in the network coding literature [4], we have unified
With a large number of P2P streaming protocols proposéb,e treatment on the analysis of the fundamental limits and
they generally fall into two strategic categorid@ush-based the actual performance of pull-based mesh protocols. This
tree streamingstrategiesd.g, [1]) organize participating peers provides a solid theoretical foundation for the charaztgion
into one or more multicast trees, and disseminate streamp@fgthe performance gap between the fundamental limits and
content along these trees. In contrast, pull-based mesh the actual performance. We perform an in-depth study of
streamingstrategies €.g, [2]), the streaming content is pre_several important factors that account for the performayage
sented as a series afegments each representing a shor@and quantify their impact on the performance of pull-based
duration of playback. Every peer maintains a list of neigﬁnesh protocols. Our analytical results show that thergsgis
boring peers, angeriodically exchanges segment availabilitysignificant performance gap between the fundamental limits
information of streaming buffers (often referred to asffer and the actual performance of pull-based mesh protocols.
map3 with its neighboring peers. Based on such informatiofloreover, periodic buffer map exchanges account for most
of the gap that separates the actual and optimal performance
This work was supported in part by Bell Canada through it$ Balversity TO our knowledge, there has been no existing work in the

Laboratories R&D program. Bo Li's research was supported ipagrants |iterature that provides a thorough analytical undersitaydf
from RGC under the contracts 615608, 616207 and 616406, byaat g

from NSFC/RGC under the contract NKUST603/07, and by a grant from pull-based m(_ash protocols, with a particular focus on both
HKUST under the contract RPC06/07.EG27. fundamental limits and the performance gap.

I. INTRODUCTION

The remainder of the paper is structured as follows. lprotocols. For instance, Zhoet al. [13] developed a simple
Sec. I, we highlight our original contributions in the cert stochastic model for streaming systems using pull-baseshme
of related work. Sec. Il presents our system model alonf) wiprotocols. With this model, they evaluated and comparegkthr
fundamental constraints in P2P streaming systems. In Sec. dlifferent segment selection strategies. However, theyndid
we generalize several existing results on the fundamentas| take into account the feature of periodic buffer map excbang
of pull-based mesh protocols. Sec. V performs an in-depih contrast, we have considered this feature in our thexaleti
study of important factors that account for the performanéemmework and demonstrated that it indeed plays a crucial ro
gap. Finally, Sec. VI concludes the paper. in the performance of pull-based mesh protocols.

Bonald et al. [14] studied several push-based protocols
and proved that some of them can achieve near-optimal rate
Coolstreaming [2] has pioneered a promising practice ahd delay in static streaming systems. Different from their

pull-based mesh streaming protocols, which uses the baaiork, we investigate the performance of pull-based prdsco
concepts ofgossipingand swarmingin file sharing systems. in dynamic streaming systems, with a particular focus on
Salient advantages of pull-based mesh streaming protoctie performance gap between the fundamental limits and the
include the simplicity and resilience to peer dynamics,aluhi actual performance.

make them the choice of many real-world streaming systems.

Due to the remarkable popularity, pull-based streaming prd!!- SYSTEM MODEL AND FUNDAMENTAL CONSTRAINTS
tocols have received considerable research attentioncente |n this section, we present our mathematical model for
years, with a large number of new protocols proposed.{(P2P streaming systems, including the underlying assumstio
(3], [5], [6], [7], 8], [9D)- and the key notations summarized in Table I. Consider a

Rather than designing a new streaming protocol and tryiggreaming system withV participating peers. In accordance
to evaluate the design with empirical studiesy(,Coolstream- with measurement studies of existing P2P systesrg, (15]),
ing+ [5], [6] and GridMedia [3], [7]), this paper focuseswe assume peer upload capacities are the botylenecksn
on a thorough analytical understanding on the fundametire streaming system. Léf; denote the upload capacity of
tal properties and limitations of pull-based mesh protecolpeeri (i € {1,2,..., N}). For a given streaming rat&, we
Rather than developing an elaborate algorithm to optinfize tdefine therelative capacityu; of peeri as theratio of the
streaming rate(.g.,[8], [9]), this paper focuses on exploringupload capacityU; to the streaming ratek. Let U, be the
the performance gap that separates the actual and optimarage peer upload capacity amgl be the relative average
performance of pull-based mesh protocols. peer capacity, which is defined as the ratio of the average pee

With respect to fundamental limits of pull-based meshpload capacity,, to the streaming raté.
streaming protocols, the maximum sustainable streamitgg ra We assume there is only one streaming server in the system
[10] and minimum delay bound [11] have been studied, witith upload capacity/,. If multiple streaming servers exist in
centralized scheduling algorithms proposed to approaeh the system, they can be regarded asiper streaming server
optimal values. Our work first generalizes the minimum delayith upload capacity/, equaling to the total upload capacities.
bound in [11] by relaxing the assumption that the uploaphe relative server capacity, is defined as theatio of the
capacity of each peer should be divisible by the streamirgrver upload capacity/, to the streaming raté.
rate. We then apply this result to derive tighter bounds @n th without loss of generality, we assume time sktted in
maximum sustainable streaming rate. the sense that it takes one time slot to playback a segment.

Recently, Liuet al.[12] investigated the fundamental limitswe further assume peércan send|u;| segments per time
of push-based tree streaming protocols. In particulary thelot, plus one additional segment with probability — |,
studied the effects of restrictions on the number of neighbazorresponding to its relative capacity. Similarly, the stream-
each peer can have. They derived several performance boungdsserver can sendu,| segments per time slot, plus one
on the maximum streaming rate, minimum server load, ardditional segment with probability, — |u, |, corresponding
minimum tree depth. They also proposed centralized tre-the relative server capacity:,.
constructing algorithms to achieve these bounds. Our werk i
in parallel with theirs in that our focus is on pull-based mes
streaming protocols, which are widely adopted in real-dorl

IIl. RELATED WORK

TABLE |
KEY NOTATIONS IN THE SYSTEM MODEL

streaming systems. N | Number of peers in the system.
More importantly, our work not only provides new and R | Streaming rate.
tighter performance bounds for pull-based mesh streaming | U; | Upload capacity of peet.
protocols, but also explores the performance gap by examini u; | Relative capacity of peer (= U;/R).
the effects of periodic buffer map exchanges.(gossiping) U, | Average peer upload capacity.
and lack of centralized scheduling, which are essentialifea u, | Relative average peer capacits U,/R).
of pull-based mesh protocols that should not be ignored. U, | Server upload capacity.
There also exist a small number of analytical papers on | us | Relative server capacity= U,/R).
the performance modeling and analysis of P2P streaming | B | Number of segments in a buffer.

Now we discuss several fundamental constraints and theisndom variabld?’, for which

implications for P2P streaming systems, which are instnime Var|Zi]
tal to establish an in-depth understanding of pull-basedhme EW]=1, Var[W] = —o—"".
protocols. First of all, we observe th#te total bandwidth
consumption should not be greater than the total bandwidthollows that Zp
supply This leads to the following lemma, which has been mDE) W,

roved in [10].
P [10] _ o almost surely a& — oo. Therefore,

Lemma 1:For a streaming system with given server upload Z P
capacityU, and average peer upload capadity, the maxi- w L 2Pkt k < 2P0y
mum sustainable streaming rakg,.,. has the following upper m mP &) = Dk =y, Dk)
bound: i In other words,

Bmax < Up + 57 log,,, k — log,, W < D(k) < log,, k — log,, W + 1.

where N is the number of peers in the system. Finally, note thatlog,, k > log,, W with high probability

In particular, if N tends to infinity, then the upper boundwhenk is sufficiently large. We thus have
in Lemma 1 reduces t®Ry,.x < Up. In other words, the
) : . : D(k) =~ [log,, k],
relative average peer capacity, satisfiesu, > 1 in large-
scale streaming systems. for sufficiently largek.]

Another fundamental constraint for P2P streaming systems-€Mma 2 suggests that it takes at legist;,,, N'] time slots
is as follows:a peer cannot upload a segment until it complet§" & particular segment to reach &l peers in the system,
the download of this segmerits shown in [11], this constraint When the populationV is very large. Intuitively, although
sets up a limit on how fast a segment can be disseminated to/f¢V) iS @ random variable in the branching process)V)
peers in the system. The special case of homogeneous uplé@@verges toflog,, N as N increases, due to the effect of
capacity withu, = 1 has been discussed in both [11] andfW Of large numbers.

[14]. Here we consider the general homogeneous case where IV. A STUDY OF FUNDAMENTAL LIMITS

u; = up > 1foralli e {1,2,...,N}. (We refer readers t0 |, i section, we proceed to the fundamental limits of

our extended manuscript [16] for the discussions on Seveﬁlll-based mesh protocols with regard to several important

typical heterogeneous cases.) performance metricFirst, an initial buffering delaymust be
Without loss of generality, we assume only one peer hagperienced by a peer when it first joins or switches to a new

this segment at the beginning of time slbtAfterwards, par- channel. How do we improve user experience with the shortest

ticipating peers with this segment cooperatively dissetein initial buffering delay?Secondif media segments do not arrive

it to other peers subject to their upload capacities. We area timely fashion, they have to be skipped at playback. How

particularly interested in the following questiowhat is the do we consistently sustain a high streaming rate with as few

minimum number of time slots it takes for this segment fdayback skips as possible?

reach all N peers in the systePn We believe these two performance metrics should be given

We observe that such a segment dissemination process RHArty when evaluating a pull-based mesh protocol, ay the
be well modeled by &ranching processMore specifically, let Matter most to theiser satisfactionWe derive several fun-
Z,, denote the number of peers that have this segment at fi@nental limits on the initial buffering delay and sustaiea
beginning of time slot.. We know that{Z,,n = 0,1,...} is Stréaming rate. In particular, vv_e_focus on flesh crowdsc_e-
a branching process, witd, = 1 and E[Z;] = 1 + u,. We Naro wherg most of the peers Jom_the system at approxignatel
define the delay functioD(k) as the minimum number of the same time, just after a new live event has been released.
time slots it takes for at leadt peers to receive this segmentVe note that typically, in steady state, it is quite possible
More precisely,D(k) = min{n : Z, > k}, for 1 < k < N. to maintain a high streaming rate with short initial buffeyi

We are interested in the asymptotic behavioriafk), when delays [6]. Hence, we have mainly focused on the flash crowd
k tends to infinity. scenario as it exercises the streaming systems the most. Our

theoretical framework may also be extended to other dynamic
scenarios of interest, such as peer churning.

€N The first question we are interested in is thathat is the
minimum initial buffering delay that should be experienbgd

Lemma 2:Let D(k) = min{n : Z,, > k} be the minimum
delay for at leask peers to receive a particular segment. Th
it holds almost surely that

D(k) = [log,, k], a flash crowd ofN peer® Here we give a lower bound on
o the minimum initial buffering delay. For simplicity, we asae
when tends to infinity, wheren = E[Z1] =1+ u,. that the relative server capacity is an integer number. This

Proof: Let W,, = Z,/m™,n = {0,1,...}. Kesten and is a reasonable assumption, as the total upload capacifties o
Stigum [17] proved that ifm > 1 and E[Z; log Z1] < oo, commercial streaming servers are typically much largen tha
then the random variabledV,,} converge almost surely to athe streaming rate [18] so that the round error can be ignored

Lemma 3:Let D,,;, denote the minimum initial buffering node in the trellis graph is appropriately labeled accardm
delay that should be experienced by a flash crowd/gieers, certain patterns. We are particularly interested in subkliag
for the given relative server capacity; and relative peer patterns that achieve the minimum delay bound.

capacityu,. Then
Dmin 2 ’Vlog'rn(N//uS)] + 1’

wherem = 1 + u,,.
Proof: Lemma 2 suggests that it takes at lefst;,, N|

To this end, we introduce the following notations. kef(t)
denote the number of labélon the nodes in the trellis graph
at the beginning of time slot. Denote byS;(t) the set of
peers that have labélat the beginning of time slat Clearly,
we havel|S;(t)| = m;(t). Algorithm 1 specifies the evolution

time slots for a particular segment to reach All peers. It patterns for{m;(t)} and {S;(¢)} that achieve the minimum

follows that it takes at leasflog,,,(N/us)] time slots forus
copies of a particular segment to reach/slipeers. Note that

delay bound.

one additional time slot is required for the streaming servélgorithm 1 Graph Labeling Segment Scheduling Algorithm

to upload these:, copies. Therefore, a lower bound for the 1. Compute the minimum delay bound
Here, Dyin = [log,, (N/us)] + 1.
2. Set current time slot = 1.

minimum initial buffering delayD,,;, is given by D.i, >
[log,,, (N/us)] + 1. u

min-

It has been shown in [11] that this lower bound can bes. Setp = u, — |u,].
achieved by a centralized snow-ball algorithm in the specias. Initialize m;(1) andS;(1). Set

homogeneous case af, = 1. We will show later that this

lower bound can also be achieved for the general homogeneous

case ofu, > 1. To this end, we introduce the concepttalis
graphsand develop a centralizegtaph labelingalgorithm that
achieves this lower bound. In the extended manuscript {£6],
extend this lower bound to several typical heterogeneosssca
and discuss how to achieve it using trellis graph techniques

Trellis Graphs and the Graph Labeling Algorithm 6.

The concept of trellis graphs has been originally propose&'
in the network coding literature [4]. We now introduce it et
context of P2P streaming systems. Given a streaming systel%,
the associated trellis graph is defined as follows. For each
peer p in the system and € {0,1,...}, the trellis graph 11
includes a nodey,, which corresponds to the associated peer
p at the beginning of time slat Similarly, for the streaming
serverS andt € {0,1,...}, the trellis graph includes a node 12.
S;. Fig. 1 illustrates an example of the trellis graph for as
streaming system with peers. The trellis graph can be treated
as a detailed description of the original streaming systean t
allows us to convenientlgesignandanalyzecertain streaming 14
protocols for the system.

We are now ready to introduce the graph labeling aIgorithrJnG'
that achieves the minimum delay bound. Consider a streamihfy
system with/V participating peers. There is a single streaming
server which distributes media segments, in playback ptder
the NV peers subject to its upload capacity. Each segment has
a unique sequence number, starting framin other words, 18.
the streaming server sends segmetat a number ofu, peers
during time sloti — 1.

The label on the node; in the trellis graph represents

ug, Ifi=1,
mi(1) = { 0, otherwise
L2 w), =1,
Si(1) = { @, otherwise

5. while current time slot < the maximum time slotlo

Sets =t — Dyin + 2.

Computem; (¢t + 1) for eachi as follows:

if i =1¢+1 then
mi(t + 1) = Ug.

else ifmax{s + 1,0} <i <t-+1 then
ml(t -+ 1) = (1 -+ Lupj)mz(t) + binornc(mi(t),p),
where binornd)M, p) is a binomial random number
with parameters\/ andp.

else ifi =s+ 1> 0 then
mi(t + 1) = minfg(t + 1), (1 + [up))mit) +
binornd'm;(¢t),p)}

whereg(t+1) = N — 311 m;(t+1).
else

mi(t+1)=0.
end if

Label the nodes in the trellis graph at the beginning
of time slot¢ + 1 according tom;(¢t + 1) such that
{Si(t+ 1)} are pairwise disjoint and;(t) C S;(t+1)
Schedule the segment transmissions during timetslot
according to{S;(t)} and{S;(t + 1)}.

Sett =t+ 1.

20. end while

the newest segmeni €., the segment of the largest sequence
number) in the playback buffer on peerat the beginning of

To illustrate how to achieve the minimum delay bound

time slott. When peep has a chance to serve others duringsing our graph labeling algorithm, we provide the follog/in
time slott, it would send the segment corresponding to thexample.

label on the nodey;. In other words, a peer always selects Example: We consider a streaming system wiiti = 6
the newest segment in the buffer to serve others in our grapters. We illustrate the associated trellis graph in FigiVé.

labeling algorithm.

setus = u, = 1 in this example. It is easily verified that the

The basic idea behind our graph labeling algorithm iminimum delay bound id time slots in this example.
simple. The minimum delay bound can be achieved, if eachlinitially, we havem,(1) =1 andS;(1) = {1}. Hence, we

Theorem 1:If the relative peer capacity, is an integer
number, the minimum delay bound can be achieved with no
playback skips. Otherwise, the minimum delay bound can be
achieved with some playback skips.

Due to space constraints, we omit the proof here. Interested
readers are referred to our extended manuscript [16]. The ke
idea of the proof is to show that the minimum delay bound
can be achieved if Liné7 and 18 in Algorithm 1 are feasible
and then prove the feasibility of Liné7 and 18. In [16],

Fig. 1. Anexample to illustrate segment scheduling using trepfsLabeling we also quantify the playback skips when the relative peer

algorithm. We setN' = 6 and us = u, = 1 in this example. That is, capacityu,, is a fraction. Theorem 1 generalizes the minimum

both the streaming server and the participating peer canadpimly one delay bound in [11] by allowing:, to be a fraction. This

segment during each time slot. The minimum delay bound in thimplais P

4 time slots. This example shows that each segment can be dissetntoa relaxation enables us to derive tighter bounds on the maximu

all participating peers within the minimum delay boundtifne slots) after it gstainable streaming rate, as shown by the following traor

is injected by the streaming server. . . .
Theorem 2:Let R,,.x denote the maximum sustainable

give labell to peerl at the beginning of time slot. In the streaming rate for a streqming system with given server

first iteration ¢ = 1), we havem;(2) = 2 andmy(2) = 1. capacityU, and peer capacity,, then

We chooseS; (2) = {1,2} and S»(2) = {3}. Clearly, $1(2) U, if N<25-10s

andS,(2) are disjoint withS; (1) C S1(2), which satisfies the Rmax = { g

requirement of Linel7 in Algorithm 1. Thus, we give label) _
to peer2 and label2 to peer3 at the beginning of time sldt. whereB is the number of segments in the playback buffer and

Next we schedule the segment transmissions during time sfét 1S the maximumgi such that

(7]

OOOOOO/H

o o~ O N =

0000001

t=0 t=1

@)

R* otherwise,

1 according to the labels. As shown in Fig. 1, the streaming (1+ %)B_1E SN
server uploads segmedito peer3 and peen uploads segment R R —
1 to peer2. .
In the second iterationt (= 2), we havem;(3) = 3, Proof: Theorem 1 states that it také,,;, time slots for

ms(3) = 2, andms(3) = 1. We chooseS;(3) = {1,2,6}, a particular segment to arrive at almost all the peers in the
S2(3) = {3,4}, and S5(3) = {5}, which satisfies the system. Therefore, the buffer siZ8¢ should be no less than
requirement of Linel7 in Algorithm 1. We label the nodes the initial buffering delayD,,;,. In other words, we need to
based or{S;(3)} at the beginning of time sl& and schedule enforce the following condition:

the segment transmissions during time slotsee Fig. 1 for
details). We repeat the iteration process in Algorithm licivh log,,(N/us) +1 < B. @

results in a trellis graph with a segment scheduling schesne aAfter simple algebraic manipulations, we obtain an equiva-

shown in Fig. 1. lent condition as follows:
TABLE i U U
DOWNLOADING SEGMENTS ONEACH PARTICIPATING PEER (1 + fp)B_lfs > N. (3)
Time Slot Participating Peers If we set the streaming rat& to its maximum value/,,
5 1 2 3 4 5 6 then condition (3) reduces to
1 12 o5-1Us o
2 2 1,3 1 Up ~
3 2,4 2 1 1 3 completing the proof. []
4 4 35 3 2 2 The term28-1 5= reflects thescalability of the streaming
5 3 3 5 4,6 4 system during a flash crowd. It suggests that a streaming

system can accommodate a flash crowd of scale less than

Now we verify that the minimum delay bound has beep5-1U- with maximum streaming rate. Hence, the most
achieved with no playback skips in this example. We focus @ffective approach to improve the scalability of a streamin
the downloading process on each participating peer. Tdblesystem is to increase the buffer size on participating peers
shows the downloading segments on each participating peeprevious performance bounds on the sustainable streaming
during each time slot. It is easily verified that each segrmant (gte €.9., [12]) have not taken into account the impact of
be disseminated to all participating peers within the mimm pyffer size. In contrast, Theorem 2 characterizes how adini
delay bound4 time slots) after it is injected by the streamingyyffer size affects the sustainable streaming rate, asasete
server. scalability of the streaming system during a flash crowd. We

The correctness of our graph labeling segment schedulipglieve this would shed new insight on the design of playback
algorithm is shown by the fO"OWing theorem. buffers for practica| streaming systems.

V. UNDERSTANDING THE PERFORMANCEGAP To illustrate how to schedule segments using our genethlize
In this section, we identify several important factors the%raph labeling algorithm, we provide the following example

separate the actual and optimal performance of pull-baseoExample: We consider a streaming system with = 6

mesh protocols, and mathematically quantify their effents _peegrs];f We sef" = 2 andhus - é‘l’ :el_'n th'ls’ texarr:jp:ae.t; rt'ﬁt
the initial buffering delay and sustainable streaming.réite Is, bufter maps are exchanged everime slots and bo €

mainly focus on the general homogenous case in this sect%ﬁeammg server and the participating peer can upload only

and refer the readers to [16] for the discussions on sevelaf s-egment.d_u.nng each time slot. It is easily vernjed that
typical heterogeneous cases the minimum initial buffering delayD,.,;, (2) equals ta6 time

slots in this example.

A. Effect of Periodic Buffer Map Exchanges We schedule the segment transmissions egetiyne slots
in this example, corresponding to the period of buffer map

In practical streaming systems, the buffer maps are pgpanges. Hence, we change the time unit fiotime slot

riodically exchanged so as to maintain an acceptable leYgly yjine giots. The associated trellis graph is defined based
of overhead. We are interested in how periodic buffer maQ, iha new time unit. as shown in Fig. 2

exchanges affect the system performance in terms of thalinit
buffering delay and sustainable streaming rate. Withoss tuf
generality, we assume buffer maps are exchanged &vémge
slots.

Theorem 3:Assume that buffer maps are exchanged every
T time slots. LetD,,;,,(T') denote the corresponding minimum
initial buffering delay that should be experienced by a flash
crowd of N peers, for the given relative server capacaity
and relative peer capacity,. Then

k=0 k=1 k=2 k=3

Dunin(T') = T'|log N/ug)| +T.
mm() [(1+uPT)(/ Sﬂ Fig. 2. An example to illustrate segment scheduling using #etalized
Due to space constraints, we omit the proof and interest@t%fiph Labelinghalgorithm- We Ser: tf;]e nu[nber of peiTo 6, the perigdhof
. . uffer map exchange® to 2. Both the relative server capacitys and the
.readers are referred to our extended ma_nuscn_pt. [16]‘ Tm_m lative peer capacity,, are set tol. In this example, the minimum initial
idea of the proof is to show that the minimum initial buffegin puffering delay is time slots, and the time unit &time slots. This example

delay D, (T) can be achieved by ougeneralized graph shows that each segment can be disseminated to all partigpaeers within
labeling algorithm. the minimum initial buffering delayq time slots or3 time units) after it is

o o injected by the streaming server.
Note that the only constraint imposed by periodic buffer

map exchanges is tha& new segment on a peer cannot be
uploaded until the peer has a chance to exchange buffer maps

(7]

o b~ W N =

TABLE Il
DOWNLOADING SEGMENTS ONEACH PARTICIPATING PEER

with its neighborsTherefore, we need to schedule the segment, it Participating Peers
transmissions every' time slots, corresponding to the period 1 2 3 4 5 6
of buffer map exchanges. We hence group every continiibus 0 1 2

segments into aegment groupMore precisely, the segment 1 2 1 3 4 1 2
group of sequence numbeis defined as the segmenit& — 2 3 4 1,2,4 1,2,3 2,5 1,6
DT+1,(i—1)T+2,...,iT}. Thenewest segment groum 3 4,7 3,8 5 6 3,4,6 3,4,5

peerp is defined as the segment group of the largest sequence
number in the playback buffer on pegr Fig. 2 shows the final output of our generalized graph
In the first stage of our generalized graph labeling algorjth labeling algorithm for this example: a trellis graph witlbéds
we schedule the transmissions of segment groups rather tbaneach node representing the segments being uploaded. Ta-
individual segments. The output of the first stage of thale Ill shows the downloading segments on each participatin
algorithm is a trellis graph with labels representing thevest peer during each time unit. It is easily verified that each
segment group on each node. In the second stage of sagment can be disseminated to all participating peerdgrwith
generalized graph labeling algorithm, we further schedtluide the minimum initial buffering delay 6 time slots or3 time
transmissions of individual segments within each segmamtits) after it is injected by the streaming server.
group based on the trellis graph obtained in the first stageTheorem 3 characterizes the performance gap in terms of the
of the algorithm. The final output of our algorithm is anitial buffering delay due to periodic buffer map exchasge
trellis graph with labels representing individual segrsdiging This is closely related to the fundamental overhead-delay
uploaded. Note that a node in the final trellis graph may haw@deoff ([3], [7]). To minimize the initial buffering dejaeach
multiple labels, as the associated peer may upload sevgreér has to exchange buffer maps in a timely fashion, regulti
different segments ifl" time slots. in an excessive overhead. On the other hand, to reduce the
In the extended manuscript [16], we formally describe owverhead, peers need to exchange buffer maps periodically,
generalized graph labeling algorithm and prove its coness. leading to a considerable delay.

A by-product of Theorem 3 is the fireikactcharacterization periodic buffer map exchanges, a streammg system can accom
of the overhead-delay tradeoff during flash crowds. As theodate a flash crowd of scale less tma&T)"“* with the
overhead is inversely proportional to the period of buffeqom maximum streaming rate. It unveils the overhead- -scatgbili
exchanges, the overhead-delay tradeoff can be quantifiedtiadeoff in pull-based mesh protocols during flash crowdiss T
investigating how the initial buffering delay increaseshiathe tradeoff has received little attention in the literaturs, iis
period of buffer map exchanges, which has been answereat as intuitive as the overhead-delay tradeoff.
completely in Theorem 3. For large-scale streaming systems
Theorem 3 can be restated as follows.))

Corollary 1: Assume that buffer maps are exchanged eveR Effect of Lack of Centralized Scheduling
T time slots. The corresponding minimum initial buffering
delay D, (T') that should be experienced bylarge flash
crowd can be approximated as follows:

In practical streaming systems, the participating peers em
ploy simple decentralized schemes in order to maintain the
simplicity. Intuitively, a simple decentralized scheme ulgb
Dinin(T) T lead to a certain degree of performance loss, compared to
Duin log,,(1 +u,T)’ a sophisticated centralized streaming scheme that agpesac
the optimal performances(g.,our generalized graph labeling
algorithm in Sec. V-A). Such performance loss is referred to
as the performance gap due to lack of centralized scheduling
We are interested in characterizing this performance gap an
Dpin (T) = T[log(l-i-upT)(ﬁﬂ +T. comparing it with the performance gap caused by periodic
Us buffer map exchanges.
The fundamental limitD,,,;, of the initial buffering delay is The first question is that: What pull-based streaming scheme

wherem = 1 4 u, and Dy, is the fundamental limit on the
initial buffering delay.
Proof: From Theorem 3, we have

given by should be analyzed in this section? We naturally prefer a
Dinin = [10g(1 1,)(ﬁﬂ +1. simple streaming scheme with minimum performance gap
g to the optimal centralized scheme and minimum disruption
Therefore, to traditional pull-based protocols that real-world stnéag
Diin(T) Tllog 140 1 (N/ug)] + T sy.st.ems use. Tp a;hieve this qk_)jective, we choose to make
—_— = P minimum modifications to traditional pull-based protogols
Dhnin [108 (144, (N/us)] +1 based on the insights from our generalized graph labeling
T'10g (1 40,) (N/us) algorithm. Specifically, we slightly modify the segment se-

1081 4)(N/us) (when N is largg lection component of the pull-based protocol implemented i

T [3] and keep other components of that protoaab(, overlay
log, (1 + w,T)’ construction and peer selegnon) unchanged.
The pull-based protocol in [3] employs a random segment
selection strategy: when a downstream peer has a chance
request a segment from an upstream peeraitdomly
elects a missing segment in its own playback buffer. In
r simple pull-based streaming scheme, we adopéwest
up first segment selection strategy: when a downstream
&er has a chance to request a segment from an upstream peer,

Corollary 1 suggests that the performance gap in ter
of the initial buffering delay increases significantly withe
period of buffer map exchanges. However, it does not depeg
on the scale of the system. The periodic buffer map exchan
also lead to a performance gap in terms of the sustaina

str_le_zﬁmTegmra‘;ceA Zsu;heoﬁgtbgut#erfﬂfw';%;heiorﬁg ed evelt randomly selects a segment in thewest segment group
neo S © ps chang) weﬁned in Sec. V-A) on that upstream peer, which is inspired
T time slots. LetR,,.x(T) denote the corresponding maxi-ovour generalized graph labeling algorithm.
mum sustainable streaming rate for a streaming system Wll¥\/\/ . . .
given server capacity/, and peer capacity/,. Then e again use trellis graph techniques to study the perfor-
s P mance of our simple streaming scheme. For ease of presen-
R T — Up if N<(1 +T)%*1%, B tation, we introduce the following notations. We say a peer
max(T) = R*(T) otherwise, Y 4) has segment group if it has at _Ieast one_segment in that
group. The label on each node in the trellis graph represents
where B is the number of segments in the buffer aRt(T") the newest segment group on the associated peefnkgt)

is the maximumZz such that denote the average number of labein the nodes in the trellis
Up,s_1Us >N graph at the beginning of time unit Let ¢;(k) denote the
(JrTf)T ‘R = average number of peers that have segment groap the

. beginning of time unitt. We are interested in the evolution
The proof of Theorem 4 is a straightforward extension gfatterns for{m;(k)} and{g;(k)} in the trellis graph.

that of Theorem 2. We omit the details here due to spaceProposition 1: The evolution patterns fo{m;(k)} and

constraints. Theorem 4 suggests that under the constriint{g;(k)} in the trellis graph using our simple streaming scheme

0
can be approximated by the following difference equations. ° K . . -
e g 2o
Gr1(k+1) = uT 10 e n""p 8) e Pt
ar (k) gw‘2 o 510 o a
qk(k-f—].) = qk(k)-l—umek(k)(l— N) é o osmT=2 -§10_3 o = o Sm T=6
m (k) § 107 o --ana. T =4 § 10 o B ---ana. T =6
_ —i w o osim. T=2f & H osim. T=3
G-i(k+ 1) = gri(k) + Ty (k) (1 = =) o e, T2 - anaTod
mep(k) = qu(k) 12 3Ti§1e5 6 7 12 3Ti$es 6 7
i—1
ma_i(k) = (k) H (1 _ Qk—j(k)) () (b)
k—1 = Gk N Fig. 3. Validation of the difference equation approximasidar our simple
Jj=0 pull-based streaming scheme. In (a), we set the relative rseagacityus to

. . . . 2 and the relative peer capacity, to 1.1. The number of peers in the system
Proof: Consider the system performance during time unt set 1510000. In (b), we set the relative server capacity to 2 and the

k. Note that segment group+ 1 is the newest group on therelative peer capacity,, to 1.1. The number of peers in the system is set to
Streaming server during this time unit. Thus. we h@yﬁ (]H- 100000. We observe that our analytical approximations match the sitiounl

X results quite well.
1) = usT. Let us turn to segment group Note that there are

a total ofmy,(k) peers with labek that would upload segmenthis ghjective, we compare the fundamental limits (reférre
groupk during this time unit. If a peer without any segment i, 45jimit) obtained in Sec. IV with the performances of our
groupk receives such a segment during time unithen the generalized graph labeling algorithm (referred topasiod)
number of peers that have segment groapthe beginning of 54 our simple streaming scheme (referred tsiamlg. The

time unitk + 1 would be increased by. Therefore, we have peformance difference betwedimit and period reflects the
qr(k+1) = qi (k) +up Ty (k) (1 — g (k) /N). This argument yertormance gap due to periodic buffer map exchanges, as
also applies to other segment groups. ~ buffer maps are periodically exchanged in our generalized
_Now let us turn to the number of labels at the beginning ¢faph |abeling algorithm. The performance difference leetw
time unitk. Note that a peer has labkl— i at the beginning heriod andsimplereflects the performance gap due to lack of

of time_ urjitk if and only if segment grou;&_—z’ is the newest antralized scheduling, as explained earlier.
group in its buffer. Assume that for any given peer, the event

that it has segment group — i is independent of the event ¢

[o2]
o

; . 5,50 [iimit > [Mimit

that it has any other segment group. Thus, the probabildy thS |mperiod g, Mperiod
segment grougk — ¢ is the newest group for a given peer can§45 [Isimple o 5[simple
be approximated bﬂ;;}l)(l—qk,j(k:)/N). We therefore have 5, §30
my—i(k) = qu—i(k) [T;Zo(1 — qu—;(k)/N). m Z =15

The following corollary characterizes the evolution of pee £ '° £
that have a given segment group. 0 o

. ; 2 4 6 8 10 2 4 6 8 10

Corollary 2: For a given segment group, I¢tk) denote the Period of buffer map exchanges Number of peers (x 10%)
fraction of peers that have this segment gréupne units later @)
after it is injected by the streaming server. Then the elahut
of f(k) can be approximated as follows. Fig. 4. Comparisons of the performance gap in terms of the litititfering

delay. In (a), we set the relative server capacityto 2 and the relative peer
f(l) - usT/N capacityu, to 1.1. The number of peers in the system is set®000. We

- vary the period of buffer map exchanges fr@rtime slots to10 time slots. In
.))) :) (b), we set the relative server capacity to 2 and the relative peer capacity
f(l + 1) = f(Z) + Upr(Z)(l - f(Z)) H (1 - f(])) up to 1.1. The period of buffer map exchanges is setdtdime slots. We
j=1 vary the number of peers in the system fr@d000 to 100000. We observe
. . . that periodic buffer map exchanges account for most of the fyaipseparates
Fig. 3 compares the fraction of peers that have a givéw actual and optimal initial buffering delay in pull-baseésh protocols. In

segment group obtained by CoroIIary 2 and by running |arg@).ntrast, the lack of centralized scheduling only respﬂta isma_ll_ d_egree of
. h . . . erformance loss. Moreover, the performance gap increagagicantly as

scale simulations, in a number of different scenarios. period of buffer map exchanges increases, but is ingentitthe number
observe that our analytical approximations correctly jmted of peers in the system.
the evolution behavior of the system, both qualitativelgl an Fig. 4 illustrates the comparisons of the performance gap
guantitatively. As seen in Fig. 3, the fraction of peers theate between the fundamental limits and the actual performance
a given segment group increases almost exponentially undémpull-based mesh protocols in terms of the initial buffigri
our newest group first strategy. This implies that our simplielay. From Fig. 4, we observe that periodic buffer map
streaming scheme is able to approach the performance of exchanges account for most of the gap that separates the
generalized graph labeling algorithm, in which the fractad actual and optimal initial buffering delay in pull-based she
peers that have a given segment group increases expotentigtotocols. In contrast, the lack of centralized schedutinty

Now we are ready to study the performance gap due to ladsults in a small degree of performance loss. Moreover, we
of centralized scheduling and compare it with the perforteanobserve that the performance gap increases significantheas
gap caused by periodic buffer map exchanges. To achigeriod of buffer map exchanges increases, but is inseagitiv

the number of peers in the system. This observation agreestrast, the lack of centralized scheduling only resuitsa i

with Corollary 1.

small degree of performance loss.

We now turn to the performance gap in terms of the sus-Our analytical characterization of the performance gap
tainable streaming rate. As shown in Fig. 5, we observe agdirings us not only a better understanding of several fundame
that periodic buffer map exchanges account for most of tit@ tradeoffs in pull-based mesh protocols, but also inguart
performance gap, while the lack of centralized schedulinly o insights on the design of practical streaming systems that
leads to a small degree of performance loss. Furthermoge, tian achieve high streaming rates and short initial bufferin
sustainable streaming rate deteriorates significantlgr dfte delays. For example, we give the first exact characterizatio
system scale exceeds a threshold and this threshold depeofdihe overhead-delay tradeoff in pull-based mesh progocol
critically on the period of buffer map exchanges. This con§ir during flash crowds. We further unveil the overhead-schtgbi
the overhead-scalability tradeoff in Sec. V-A. Both Fig. 4radeoff that receives little attention in the literatutdore
and Fig. 5 suggest that periodic buffer map exchanges plagportantly, our analytical results suggest that simpldl-pu
a critical role in the actual performance of pull-based medtased streaming protocols are good enough to achieve high
protocols and should deserve special treatment in theraysteireaming rates and short initial buffering delays, withefin
design. Moreover, simple pull-based streaming schemds witined system parameters, such as the buffer size and tlog peri
fine tuned system parameters are good enough to achiefduffer map exchanges.

high streaming rates and short initial buffering delaysthes
lack of centralized scheduling only leads to a small degfee o
performance loss. (1]

o 2]
S o
2o9 ° -
g : [3]
o
%08 o
o |[—limit
o . _ [N
<07 ---perlod (T=2) [4]
T o simple (T =2)
Iz ---period (T = 3) ° Tk [5]
@ 0.6] o simple (T =3) °

10* 10° 10°

Number of peers

Fig. 5. Comparisons of the performance gap in terms of the sadtisi
streaming rate. We set the server upload capdcityto be 2 times of the
average peer upload capaclty,. We vary the number of peers in the system (7]
from 12500 to 800000. We observe again that periodic buffer map exchanges
account for most of the performance gap, while the lack of edim&d
scheduling only leads to a small degree of performance losshéfmore, (8]
the sustainable streaming rate deteriorates significaftdy the system scale
exceeds a threshold and this threshold depends criticallyhe period of
buffer map exchanges.

(6]

(9

VI. CONCLUSION [10]

The unique strength of pull-based mesh streaming protoc&l&l
is the simplicity, which makes them the choice of many reaﬂiz]
world streaming systems. The essential features of pskda
mesh protocols include periodic buffer map exchanges and
lack of centralized scheduling. These features contritudet
to the simplicity of pull-based mesh protocols, but at thmea
time, lead to a performance gap between the fundamerifal
limits and the actual performance.

In this paper, we have developed a unified framework basgd]
on trellis graph techniques to mathematically analyze and
understand the performance of pull-based mesh protociils, Wig
a particular focus on such a performance gap. Our analytical
results show that there exists a significant performance gap
between the fundamental limits and the actual performanﬁg]
of pull-based mesh protocols. Moreover, periodic buffepma
exchanges account for most of the gap that separates tra adigl
and optimal performance of pull-based mesh protocols. In

REFERENCES

V. Venkataraman, K. Yoshida, and P. Francis, “ChunkyagreHetero-
geneous Unstructured Tree-based Peer-to-Peer MultigasBroc. of
IEEE International Conference on Network Protocols (ICNB)O6.

X. Zhang, J. Liu, B. Li, and T.-S. P. Yum, “CoolStreaming/Déxt: A
Data-Driven Overlay Network for Efficient Live Media Streargj” in
Proc. of IEEE INFOCOM 2005.

M. Zhang, Q. Zhang, L. Sun, and S. Yang, “Understandirg Frower
of Pull-based Streaming Protocol: Can We Do BettdEEE J. on Sel.
Areas in Communication®ecember 2007.

R. Ahlswede, N. Cai, S. R. Li, and R. W. Yeung, “Network dnfnation
Flow,” IEEE Transactions on Information Theorjuly 2000.

B. Li, S. Xie, G. Y. Keung, J. Liu, I. Stoica, H. Zhang, and Xhang,
“An Empirical Study of the Coolstreaming+ SystenZEE J. on Sel.
Areas in Communicationecember 2007.

B. Li, S. Xie, Y. Qu, G. Y. Keung, C. Lin, J. Liu, and X. Zhanfinside
the New Coolstreaming: Principles, Measurements and Perfarena
Implications,” in Proc. of IEEE INFOCOM 2008.

M. Zhang, Y. Xiong, Q. Zhang, and S. Yang, “A Peer-to-PBigtwork
for Live Media Streaming: Using a Push-Pull Approach,”Rmnoc. of
ACM Multimedia 2005November 2005.

M. Zhang, C. Chen, Y. Xiong, Q. Zhang, and S. Yang, “Optiimizthe
Throughput of Data-Driven based Streaming in Heterogen&wueslay
Network,” in Proc. of ACM Multimedia Modeling 20Q0danuary 2007.
L. Massoulie, A. Twigg, C. Gkantsidis, and P. Rodrigu#zandomized
Decentralized Broadcasting Algorithms,” Froc. of IEEE INFOCOM
2007.

R. Kumar, Y. Liu, and K. W. Ross, “Stochastic Fluid Thedor P2P
Streaming Systems,” iRroc. of IEEE INFOCOM 2007.

Y. Liu, “On the Minimum Delay Peer-to-Peer Video StreagiirHow
Realtime Can It Be?” irProc. of ACM Multimedia2007.

S. Liu, R. Z. Shen, W. Jiang, J. Rexford, and M. ChiangerfBrmance
Bounds for Peer-Assisted Live Streaming,”fnoc. of ACM SIGMET-
RICS 2008.

] Y. Zhou, D. M. Chiu, and J. C. Lui, “A Simple Model for Anating

P2P Streaming Protocols,” iRroc. of IEEE International Conference
on Network Protocols (ICNRR007.

T. Bonald, L. Massoulie, F. Mathieu, D. Perino, and A.igw “Epi-
demic Live Streaming: Optimal Performance Trade-Offs,"Aroc. of
ACM SIGMETRICS2008.

L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang, “Agere-
ments, Analysis, and Modeling of BitTorrent-like Systems,Froc. of
Internet Measurement Conferen@o05.

] C. Feng and B. Li, “Understanding the Performance Gap be-

tween Pull-based Mesh Streaming Protocols and Fundamemtéts|”i
http://www.eecg.toronto.edubli/techreports/gap.pdf, ECE, University
of Toronto, Tech. Rep., 2008.

H. Kesten and B. Stigum, “A Limit Theorem for Multidimensial
Galton-Watson Processe#thn. Math. Statist.vol. 37, 1966.

C. Wu, B. Li, and S. Zhao, “Multi-channel Live P2P Streagi
Refocusing on Serves,” iRroc. of IEEE INFOCOM 2008.

