
1 Network Coding for Content
Distribution and Multimedia
Streaming in Peer-to-Peer
Networks

Chen Feng, Baochun Li

Department of Electrical and Computer Engineering, University of Toronto

Peer-to-peer (P2P) networks have been one of the most promising platforms to

realize the potential of network coding, since end hosts (referred to as peers)

at the edge of the Internet have abundant computational resources with mod-

ern processors. In this chapter, we take a journey into the application world of

network coding in P2P networks, with a focus on two important applications:

content distribution and multimedia streaming. For each application, we explore

the possible design space of P2P systems with network coding, and provide an

intuitive explanation for advantages of using network the coding technique. We

further unfold our journey through a discussion of several theoretical results and

practical issues.

1.1 P2P Content Distribution with Network Coding

P2P content distribution has become increasingly popular in current-generation

content distribution protocols. The basic idea in P2P content distribution pro-

tocols is surprisingly simple. Consider a single server distributing a file (usually

hundreds of megabytes or even gigabytes) to a large number of end hosts (peers)

over the Internet. Instead of uploading the file to every individual peer, the server

first divides the file into r data blocks, and then distributes these data blocks

in an efficient manner by letting participating peers exchange them with one

another.

The essential advantage of P2P content distribution is to dramatically reduce

the file downloading time for each peer. Intuitively, as participating peers con-

tribute their own upload bandwidth to serve one another, the aggregate upload

bandwidth in the system is significantly increased, leading to a much faster file

distribution process.

2 Chapter 1. Network Coding for Content Distribution and Multimedia Streaming in P2P Networks

1.1.1 How can network coding be applied to P2P content distribution?

BitTorrent [C03] has evolved into one of the most popular P2P content distribu-

tion protocols. A detailed description of the BitTorrent system can be found in

[PGES05]. In BitTorrent, when a newly arrived peer joins the system, it contacts

a central tracker to obtain a list of some participating peers that are currently

downloading the file. Typically, the tracker provides 50 peers chosen at random

among all participating peers. The new peer then attempts to establish and

maintain connections to about 40 peers, which become its neighbors. If a peer

fails to maintain at least 20 neighbors (due to peer departures, for example),

it contacts the tracker again to receive a list of additional peers. In this way, a

dynamic logical network — namely a P2P overlay network — is formed by all

participating peers that are currently downloading the file.

Participating peers in BitTorrent cooperate to download the file using swarm-

ing techniques. The file is divided into r equal-sized data blocks {b1, . . . , br}.

Each peer exchanges data blocks with its neighbors, until it has obtained all r

data blocks and can depart the system. Note that the server is also a neighbor of

a limited number of peers. After a peer downloads a new data block, it informs

all its neighbors, so that every peer in the system knows the block availability

information among its neighbors. When requesting a block from a particular

neighbor, a peer typically asks for a local rarest block, that is, a block that is

least common among all its neighbors. The purpose here is to ensure data blocks

are propagated almost uniformly through the overlay network. Otherwise, with

some very rare blocks in the system, the downloading time for each peer may be

greatly affected by such information bottleneck.

In general, a participating peer in any P2P content distribution system has to

answer the following question when requesting data blocks: which blocks should

be downloaded, and from which neighbors? Referred to as the block scheduling

problem, this question needs to be addressed in an efficient and distributed fash-

ion, with local information only. BitTorrent employs the local rarest first strategy,

hoping to avoid information bottleneck. With the help of network coding, how-

ever, this question can be solved in a surprisingly simple and effective manner.

Avalanche [GR05, GMR06] represents one of such P2P content distribution

protocols with network coding. In Avalanche, the file is again divided into r

equal-sized data blocks. This time, each block bi (i = 1, . . . , r) is regarded as a

fixed-length vector over a finite field Fq. Rather than uploading original data

blocks to its neighbors, a peer (or the server) uploads coded blocks, where each

coded block is a random linear combination of the coded blocks already received

by the peer. With this change, there is no need for a peer to request specific

data blocks. Instead, a peer in the system blindly downloads coded blocks from

its neighbors, until it is able to reconstruct the original file.

Let us use a simple example in [Y07] to better illustrate how the system works.

At the beginning of the file distribution process, a peer (say peer A) contacts the

server and receives a number of coded blocks. For example, the server uploads

Network Coding for Content Distribution and Multimedia Streaming in P2P Networks 3

two coded blocks x1 and x2 to peer A, where

xi = αi
1b1 + αi

2b2 + · · · + αi
rbr, i = 1, 2 (1.1)

with αi
j (1 ≤ j ≤ r) being chosen randomly from the field Fq. When peer A needs

to serve a neighboring peer (say peer B), it simply generates a coded block x3

x3 = α3
1x1 + α3

2x2, (1.2)

where α3
1 and α3

2 are again randomly chosen from Fq. Substituting (1.1) into

(1.2), we obtain

x3 =
r

∑

j=1

(α3
1α

1
j + α3

2α
2
j)bj .

It means that x3 (and in general every coded block in the system) is some

random linear combination of the original blocks {b1, . . . , br} and the associated

vector (α3
1α

1
1 + α3

2α
2
1, . . . , α

3
1α

1
r + α3

2α
2
r) is called the global encoding vector for

x3. Continuing this process, a peer in the system is able to collect r linearly

independent coded blocks. How can a peer recover the original file from these

coded blocks? As explained in Chapter 1, the global encoding vector is attached

to each block as a “header” and this information is used by a peer to reconstruct

the original file as long as it has received r linearly independent coded blocks.

1.1.2 Why is network coding helpful in P2P content distribution?

What are the potential benefits of network coding for P2P content distribution?

Recall that the difficulty of P2P content distribution is finding an optimal block

scheduling algorithm, which should minimize the file downloading time in a dis-

tributed manner. This becomes even more challenging, when the overlay network

is changing dynamically.

Without network coding, each peer has to decide which blocks to download

from which neighbors, based on local information only. This may be suboptimal

due to lack of a global view, since local rarest blocks may not be global rarest

blocks. In contrast, with network coding, all coded blocks are almost equally

useful to any peer and there is no need to locate and request global rarest blocks

in the system. As such, information bottleneck is avoided, which in turn reduces

the file downloading time.

Another important benefit of network coding is the robustness to peer depar-

tures. Without network coding, it is possible that a few data blocks are lost, due

to departures of the server as well as the peers who have these data blocks. In

this unfortunate event, the original file cannot be reconstructed by the remaining

peers. On the other hand, with network coding, the risk of losing certain data

blocks is no longer a concern. Intuitively, since data blocks are mixed together,

each of them is spreading to a large number of coded blocks in the system.

4 Chapter 1. Network Coding for Content Distribution and Multimedia Streaming in P2P Networks

In summary, the use of network coding solves the block scheduling problem in

a surprisingly simple and effective manner, leading to a shorter file downloading

time. Moreover, it provides desirable robustness to peer departures. There is no

need to worry about losing certain data blocks anymore. All of these contribute to

the usefulness of network coding in P2P content distribution. In the following,

we will present a number of theoretical results to substantiate these claimed

advantages of network coding.

1.1.3 Theoretical results on P2P content distribution with network coding

Let us begin with the system model for P2P content distribution. The overlay

network formed by the single server and participating peers can be modeled by a

directed graph G = (V,E), where s ∈ V denotes the server, a vertex v ∈ V − {s}

corresponds to a participating peer, and every edge e ∈ E corresponds to an

overlay connection from one peer to another.1

This model is well suited for static P2P content distribution systems without

peer arrivals and departures. However, peers may join and leave the system at

any time in the file distribution process. To model such peer dynamics as well

as block transmissions, the trellis graph technique [Y07, W06] can be applied

as follows. For a directed graph G = (V,E), we construct a new trellis graph

G∗ = (V ∗, E∗) with the node set

V ∗ =
{

(i, t) : i ∈ V and t ∈ {t0, t1, t2, . . .}
}

,

where the node (i, t) ∈ V ∗ corresponds to the node i ∈ V at time t, and the

set {t0, t1, t2, . . .} denotes all starting times and ending times for events of peer

dynamics and block transmissions. The edge set E∗ is determined by the strategy

adopted by the server as well as by all the other nodes in V to request and upload

coded blocks. Specifically, there are two types of edges in the trellis:

1. An edge e ∈ E∗ is added in the trellis graph from node (i, tk) ∈ V ∗ to node

(j, tl) ∈ V ∗, where (i, j) ∈ E and tk < tl, if a coded block is uploaded from

node i to node j, starting at time tk and ending at time tl. This type of edges

represents transmissions of coded blocks between neighboring peers.

2. Assume that node i joins the system at time tk and leaves the system at

time tl. Then there is an edge with infinity capacity from node (i, tm) to node

(i, tm+1), for all m satisfying k ≤ m ≤ l − 1. This type of edges represents the

accumulation of received information at node i over time.

The trellis graph model presented here is a generalization of that used in [Y07,

W06]. An illustration of the trellis graph G∗ up to t ≤ t8 is given in Figure 1.1,

where the edges with capacity ∞ are lightened. Note that the trellis graph G∗ is

1 If peer i maintains a TCP connection with another peer j, then we say there is an edge from

peer i to peer j. Note that an edge in G is not a physical communication link; instead, it is

an abstract link that consists of a path of underlying physical links.

Network Coding for Content Distribution and Multimedia Streaming in P2P Networks 5

Peer 1

Peer 2

Peer 3

Server

t0 t1 t2 t3 t4 t5 t6 t7 t8

Figure 1.1 An illustration of the trellis graph G∗.

always acyclic regardless of whether the directed graph G is acyclic or not. The

analysis in the sequel is a direct extension of that in [Y07].

At time t0, the server s is ready to distribute the file consisting of r data blocks

via swarming techniques with network coding as described in Section 1.1.1. This

can be exactly modeled as the node (s, t0) ∈ V ∗ multicasting r data blocks to all

other nodes in G∗ via random linear network coding.

We are now in a position to determine the downloading time for a particular

node i ∈ V . Consider the maximum flow from (s, t0) ∈ V ∗ to a node (i, tl) ∈

V ∗ in the trellis G∗, denoted by fi(tl). When fi(tl) ≥ r, the node (i, tl) can

recover the whole file with probability close to 1 under random linear network

coding, provided that the field size q is sufficiently large (please refer to the

discussion in Chapter 1 for details). Let m(i) be the minimum value of l such

that fi(tl) ≥ r, that is, m(i) = min{l : fi(tl) ≥ r}. Then with high probability,

the downloading time for node i ∈ V is given by tm(i). Note that tm(i) is also a

lower bound on the downloading time based on the information theoretic cut-set

bound. This implies that the use of random linear network coding can achieve

the minimum downloading time for this system. Even if the rare event indeed

happens that node i ∈ V cannot reconstruct the original file at time tm(i) due

to linear dependence, it can eventually recover the file after receiving a few

additional coded blocks. This can be proved by using a simple probabilistic

argument.

The above analysis demonstrates the first major advantage offered by net-

work coding — the peers do not need to decide which data blocks to be down-

loaded, while still achieve the minimum downloading time for any given strategy

of requesting and uploading coded blocks. We next turn to the second major

advantage of network coding — robustness to peer departures.

With some peers or even the server leaving the system, it is natural to ask

whether the remaining peers are able to reconstruct the original file and finish

their downloads. This important question can again be answered by using the

trellis graph techniques as above. For any given time tl, assume that we are

interested in whether the remaining peers in the system can recover the original

6 Chapter 1. Network Coding for Content Distribution and Multimedia Streaming in P2P Networks

file, provided that no more peers leave the system after time tl. Toward this end,

let R(tl) = {(i, tl) : i ∈ V } and let fR(tl) denote the maximum flow from the node

(s, t0) ∈ V ∗ to the set of nodes R(tl) in the trellis graph. Then the remaining

peers can recover the whole file with high probability, provided that fR(tl) ≥ r

[HKMESK06]. Notice that when fR(tl) < r, it is impossible for the remaining

peers to recover the whole file even with the help of global information, due to

the information theoretic cut-set bound. This implies that the use of network

coding indeed provides the best possible robustness. The robustness issue also

appears in peer-to-peer storage systems which provide reliable access to data

through unreliable peers. The use of network coding offers similar benefits as

shown in [DGWWR10, ADMK05].

Thus we see that the use of network coding in P2P content distribution

achieves both minimum downloading time and maximum robustness with respect

to the strategy of requesting and uploading coded blocks. For a given strategy,

this is almost the best possible performance one can expect. However, one still

needs to design a good strategy for peers to request and upload coded blocks. In

fact, this question is closely related to fairness issues in real-world P2P content

distribution, since a peer naturally prefers to help those neighbors that provide

the best download rates. As such, a “tit-for-tat” strategy is used in Avalanche

[GMR06] for requesting and uploading coded blocks, which aims to encourage

cooperation and reduce free-riding.

On the other hand, when all participating peers are operated by the same

company, fairness is not a major concern, since peers are willing to cooperate

with each other even without incentive. Can network coding help in this case?

Deb et al. [DMC06] have shown that with network coding, even a naive strategy

of requesting and uploading coded blocks can achieve a shorter downloading time.

More specifically, they consider a system model consisting of n participating peers

and there are r data blocks to start with. Initially, every peer has only one out

of the r data blocks and each data block is equally spread in the system. The

goal is to distribute all r data blocks among all the peers as fast as possible. For

simplicity, they assume that time is divided into slots and slots are synchronized

at the various peers. During each time slot, each peer requests coded blocks

from all the neighboring peers. Then each peer chooses a neighbor uniformly at

random from those who sent requests and uploads a coded block using random

linear network coding. In other words, a peer simply employs a random strategy

to upload a coded block per time slot. The following theorem characterizes the

performance of this strategy with network coding.

Theorem 1.1 ([DMC06]). Suppose the underlying overlay network is fully con-

nected. Suppose the field size q ≥ max{r, ln(n)}. Let Tb be the random variable

denoting the broadcasting time (the time required by all the peers to download all

Network Coding for Content Distribution and Multimedia Streaming in P2P Networks 7

data blocks) under the system model and the strategy described as above. Then,

Tb ≤ 5.96r + O
(

√

r ln(r) ln(n)
)

, with probability 1 − O

(

1

n

)

.

Further, let Ti be the downloading time for peer i, then

E[Ti] ≤ 5.96r + O
(

√

r ln(r) ln(n)
)

.

Observe that when r = Θ(n), it takes at least Θ(n) time slots for all the

peers to download all data blocks. Thus, Theorem 1.1 implies that this simple

strategy with network coding is order-optimal for r = Θ(n). They also prove that

without network coding, the simple strategy performs strictly worse in terms of

the broadcasting time. In other words, the use of network coding has the potential

to improve system performance in an environment with full cooperation when

r = Θ(n). Furthermore, their simulation results demonstrate that the benefits of

network coding carry over to the case when r is small.

Previous theoretical results suggest that the use of network coding helps to

reduce the broadcasting time, which corresponds to the maximum downloading

time among all the peers. It might be natural to ask: what about other functions

of downloading time, for example, the average downloading time? In fact, it is

shown in [WHLC09] that, given an order at which the peers finish downloading,

the use of network coding achieves any point in the optimal delay region and

in particular the average downloading time. This result is partially extended to

dynamically changing network scenarios [CHEML10] in which network coding is

shown to provide a robust solution that outperforms routing.

We have presented many advantages of network coding in P2P content dis-

tribution. However, these advantages do not come without a price. In fact,

additional computational resources are required compared with traditional

approaches. The next question naturally arises: can we reduce the computational

cost without significant performance loss?

In [CWJ03], Chou et al. has proposed the concept of group network coding,

in which a file is divided into equal-sized segments (also referred to as genera-

tions) with each segment further divided into equal-sized data blocks. The coding

operation is performed on the blocks within the same segment, but not across

different segments. Though group network coding has a potential to reduce com-

putational complexity to a large degree, its effects on the file downloading time

and robustness to peer departures are not clear at first glance.

It has been shown in [MHL06] that the use of group network coding is still

able to achieve minimum file downloading time with high probability for any

given strategy of requesting and downloading coded blocks. Moreover, the com-

putational cost for decoding group network codes can be further reduced with a

precoding technique, similar to the one used in Raptor codes (see [MHL06] for

details). In other words, a significant number of computational operations can

be saved without noticeable loss in downloading time.

8 Chapter 1. Network Coding for Content Distribution and Multimedia Streaming in P2P Networks

We next turn to the effect of group network coding on robustness to peer depar-

tures. Intuitively, the robustness degrades as the number of segments increases,

since each segment contains fewer data blocks and it is likely that all of them

are lost with peer departures. On the other hand, a small number of segments

brings a high degree of robustness, but little saving of computational cost. In

other words, there exists a fundamental robustness-complexity tradeoff of net-

work coding in P2P content distribution. It would be best if one can operate at

a “sweet spot” to enjoy most of robustness with reasonable computational cost.

In [NL07], this robustness-complexity tradeoff is quantitatively characterized,

providing a theoretical guideline for choosing such a “sweet spot”.

To summarize, network coding makes optimal use of available overlay con-

nections, without the need for sophisticated block scheduling algorithms. At the

same time, it provides best possible robustness, even if a number of peers leave

the system suddenly. Moreover, if coding operation is applied within each seg-

ment rather than the whole file, the computational cost can be greatly saved

without significant performance loss.

1.1.4 Practical aspects of P2P content distribution with network coding

The price of network coding is mostly the computational cost, which, however,

may require prohibitive computational resources. As discussed in Section 1.1.3,

the use of group network coding can reduce the computational cost without

noticeable performance loss. However, there is a tradeoff between complexity

and performance in general. So a question of practical interest may be: What is

the maximum computational cost one may afford with modern processors? Or

what are the possible configurations with respect to the number of blocks and

the block size that are affordable in practice? This question has been addressed

in [WL06] with a high-performance implementation of random linear network

coding at the application layer. A number of important observations have been

made in [WL06] with a brief summary here.

1. The number of data blocks in each segment should be less than few hundreds

with block size less than few megabytes, in order to ensure affordable encoding

and decoding.

2. The number of data blocks in each segment matters more than the block size.

This suggests the use of a small number of data blocks in each segment (such

as 100).

3. The optimal block size is around 2 − 32 KB, which provides fastest encoding

and decoding. This optimal value increases with the number of data blocks in

each segment.

In fact, each segment in Avalanche contains 80 data blocks, agreeing with our

second observation. Each data block in Avalanche has approximately 2.3 MB,

which is reasonable as suggested in our first observation. Why doesn’t Avalanche

further reduce the block size? This is partially due to slow connections between

Network Coding for Content Distribution and Multimedia Streaming in P2P Networks 9

participating peers. With slow connections, uploading and downloading speeds

become the bottleneck rather than encoding and decoding speeds. In addition,

a larger block size means less overhead in terms of the “header”, which is also

desirable in practice.

Another practical concern about network coding is the protection against mali-

cious peers. In fact, even a single corrupted block — injected by a malicious peer

— has the potential to pollute a large number of coded blocks and prevent par-

ticipating peers from decoding. Can we detect or even correct corrupted coded

blocks? In Avalanche, the use of secure random checksums [GMR06] provides

an on-the-fly detection of corrupted coded blocks at a low computation cost.

Another solution to address malicious attacks is to use network error-correcting

codes [KK08], which itself becomes a new research area for network coding.

1.2 P2P Multimedia Streaming with Network Coding

Peer-to-peer (P2P) multimedia streaming has recently witnessed unprecedented

growth on the Internet, delivering live streaming content to millions of users

in real-world applications. The essential advantage of P2P streaming is to dra-

matically increase the number of peers a streaming channel may sustain with

dedicated streaming servers. Intuitively, as participating peers contribute their

own upload bandwidth to serve one another in the same channel, the load on

dedicated streaming servers is significantly mitigated.

There are a number of fundamental performance metrics that characterize

“good” P2P streaming systems. Let us visit a few of them as examples. With

respect to playback quality, if streaming content does not arrive in a timely

fashion, it has to be skipped at playback, leading to a degraded playback quality.

How do we consistently maintain a high playback quality at all participating

peers? With respect to the initial buffering delay, which is experienced by a

peer when it first joins or switches to a new streaming channel, how do we

improve user experience with shortest possible buffering delay? With respect to

server bandwidth costs, how do we minimize such costs by maximizing bandwidth

contribution from participating peers? Last but not the least important, how do

we design a system that scales well to accommodate a large “flash crowd” and a

high degree of peer dynamics?

These performance metrics should be given priority when evaluating a pro-

tocol that is designed specifically for P2P multimedia streaming. The playback

quality and the initial buffering delay matter most to the user experience, which

determines the level of user satisfaction. The server bandwidth costs, however,

matter most to the companies in operation, as they directly determine most of

the ongoing operational costs. In the following, we will demonstrate how the use

of network coding can help to design P2P multimedia streaming systems that

enjoy good overall performance with respect to all of these performance metrics.

10 Chapter 1. Network Coding for Content Distribution and Multimedia Streaming in P2P Networks

1.2.1 How can network coding be applied to P2P multimedia streaming?

With a large number of P2P multimedia streaming protocols proposed, they

generally fall into two strategic categories. Tree-based push streaming strategies

(e.g., [VYF06]) organize participating peers into one or more multicast trees,

and distribute streaming content along these trees. In contrast, mesh-based pull

streaming strategies organize peers into a random mesh structure, with each peer

having a random subset of participating peers as its neighbors. The streaming

content is divided into a series of data blocks, each representing a short duration

of playback. Each peer maintains a playback buffer that consists of data blocks

to be played in the immediate future. Every peer periodically exchanges block

availability information of playback buffers (often referred to as buffer maps) with

its neighbors. Based on such information, data blocks are pulled from appropriate

neighbors, in order to meet their playback deadlines. Data blocks that are not

received in time are skipped during playback, leading to degraded quality.

Compared to tree-based push strategies, mesh-based pull strategies eliminate

the need to construct and maintain multicast trees, which may be difficult in

practice especially when peers join and leave the system frequently. This makes

them enjoy the advantages of simplicity and robustness to peer dynamics, which

are in fact inherited from the design philosophy of BitTorrent-like content dis-

tribution systems. For this reason, most real-world P2P multimedia streaming

systems, such as CoolStreaming [XLKZ07] and PPLive [HFCLH08], are imple-

mented using mesh-based pull strategies.

In such a streaming system, each participating peer has to decide which data

blocks to download from which neighbors. This question is similar to the block

scheduling problem in BitTorrent-like systems, but with quite a different purpose.

Instead of minimizing the file downloading time, the main purpose here is to

minimize the playback skips, thereby improving the playback quality. For a newly

arrived peer, a short initial buffering delay is also an important concern in the

design of block scheduling algorithms.

Inspired by the success of network coding in solving the block scheduling prob-

lem for content distribution systems, one may conjecture that a similar approach

may work well for multimedia streaming systems as well. In fact, Wang and Li

[WL07] have evaluated the effectiveness of applying network coding in P2P mul-

timedia streaming, by replacing traditional block scheduling algorithms with a

group network coding scheme in an experimental testbed. It has been discovered

that network coding provides some marginal benefits when the overall band-

width supply barely exceeds the demand, or when peers are volatile with respect

to their arrivals and departures.

With such mildly negative results against the use of network coding, one may

argue that the advantages of network coding may not be fully exploited by simply

replacing block scheduling algorithms in traditional mesh-based pull protocols.

This motivates a complete redesign of P2P multimedia streaming with network

coding. Indeed, Wang and Li have proposed R2 in [WLi07] — a new streaming

Network Coding for Content Distribution and Multimedia Streaming in P2P Networks 11

algorithm designed from scratch to take full advantage of network coding. Here

we present a brief overview of the design principles in R2.

Random Push on a Random Mesh Structure

In traditional mesh-based pull streaming protocols (henceforth referred to as

pull for brevity), the streaming content to be served is divided into a sequence

of equal-sized data blocks. In R2, the streaming content is first divided into a

sequence of equal-sized segments, and each segment is further divided into k

equal-sized data blocks. The coding operation is only performed within each

segment, but not across different segments. This is again for the purpose of

reducing the computational cost.

current playback

point

playback buffer

size

segment s

b1 b2 b3

x

α1 α2 α3

Figure 1.2 An example to illustrate the coding operation on peer p, where peer p has

received 3 coded blocks within the segment s, and each segment consists of 6 blocks.

Suppose a peer p has received m (m ≤ k) coded blocks in a segment s so

far, denoted as [b1, b2, . . . , bm]. When peer p needs to serve segment s for its

downstream peers, as shown in Fig. 1.2, it generates a coded block x

x = α1b1 + α2b2 + · · · + αmbm,

with αj (1 ≤ j ≤ m) being chosen randomly from the finite field Fq. As pointed

out in Section 1.1.1, x is ultimately some random linear combination of the

original blocks in segment s. Thus a downstream peer of p is able to decode

segment s as long as it has received k linearly independent coded blocks.

In pull, a missing block on a peer is requested and pulled from an appropriate

neighbor. If this block has not been received within a certain time (due to peer

departures, for example), it has to be requested and pulled again, under the risk

of missing a deadline. With network coding in R2, a missing segment on a peer is

served by multiple neighbors simultaneously without any explicit coordination,

as illustrated in Fig. 1.3. In this way, participating peers are able to perform

push operations on a random mesh structure (i.e., upstream peers decide which

segments to serve without any requests from downstream peers), thereby fully

utilizing available overlay connections. More importantly, even if a few neighbors

leave the system suddenly, other neighbors serving the same segment are still at

work, with little chance of missing a deadline.

Timely Feedback from Downstream Peers

Before pushing coded blocks, an upstream peer should obtain a precise knowl-

edge of the missing segments on its downstream peers at any time. This requires

12 Chapter 1. Network Coding for Content Distribution and Multimedia Streaming in P2P Networks

upstream peers of peer p

downstream peers served by peer p

on peer p

Figure 1.3 An illustration of random push on a random mesh structure. With network

coding, multiple upstream peers are able to perform push operations on coded blocks

within a segment without any explicit coordination.

participating peers in the system to exchange their buffer maps in a timely fash-

ion. In pull, buffer maps are exchanged periodically to avoid excessive overhead.

While R2 can afford “real time” exchanges of buffer maps — whenever a peer

has played back or completely received a segment, it sends a new buffer map to

all its neighbors.

A typical playback buffer in PULL

A typical playback buffer in R2

Figure 1.4 An illustrative comparison of playback buffers between R2 and pull.

Why is R2 able to perform such “real time” exchanges of buffer maps? Since

R2 uses large segments instead of small data blocks, buffer maps that indicate

segment availability information — as opposed to block availability information

— can be an order of magnitude smaller. In addition, with larger segments, it

takes much longer to playback or finish downloading a segment, leading to a

slower update of buffer maps. As such, with reasonable overhead, a new buffer

map can be sent to all neighbors as soon as its status has been updated.

Synchronized Playback and Initial Buffering Delays

Network Coding for Content Distribution and Multimedia Streaming in P2P Networks 13

The use of much larger segments also makes it easier to synchronize play-

back buffers on different participating peers, so that all peers are playing the

same segment at approximately the same time. R2 features synchronized play-

back as follows. When a peer joins or switches to a new streaming channel, it first

retrieves buffer maps from its neighbors, along with the information of current

segment being played back. To synchronize the playback buffer, the new peer

skips a few segments and only retrieves segments that are D seconds after cur-

rent playback point, where D corresponds to the initial buffering delay, which

depends on the number of segments to be skipped and the current playback point

(see Fig. 1.5). The peer then starts playback after precisely D seconds elapsed

in real time, regardless of the status of the playback buffer.

current playback

point

segment 2segment 1 segment 3 segment 4

2 segments to be skipped

 D seconds
start playback

here

A typical playback buffer on existing peers

A typical playback buffer on newly joined peers

segment 3 segment 4

Figure 1.5 An illustration of initial buffering delays in R2, which shows that the initial

buffering delay on a newly joined peer is determined by the number of segments to be

skipped and the current point of playback.

Under synchronized playback, peers are able to help each other more effec-

tively, since their playback buffers overlap as much as possible. This desirable

property is of particular importance during a flash crowd scenario, when a large

number of peers join the streaming channel around the same time. As these

newly arrived peers request almost same segments, they are able to help one

another as soon as they receive a small number of coded blocks. This leads to a

better utilization of their upload bandwidth, which in turn improves scalability

of the streaming system.

Finally, we remark here R2 represents a simple design philosophy, rather than

a strict protocol design. The design space of R2 is flexible to accommodate more

elaborate protocols designed for different purposes. For example, a peer in R2 has

the freedom to decide which segments to be pushed to which neighbors. Referred

to as a push strategy, this decision may be made based on timing requirement to

ensure smooth playback of urgent segments, on fairness issues to encourage coop-

eration and reduce free-riding, or on geography consideration to reduce traffic

across different ISPs.

14 Chapter 1. Network Coding for Content Distribution and Multimedia Streaming in P2P Networks

1.2.2 Why is network coding helpful in multimedia streaming?

The strict timing requirement of multimedia streaming applications has marked

a significant departure from applications in content distribution. Due to such a

constraint, the advantages of network coding are less obvious. In fact, it has been

shown in [WL07] that the success story of applying network coding in content

distribution cannot be simply replicated in multimedia streaming. To take full

advantage of network coding, a complete redesign of P2P streaming algorithms

is indeed required. This motivated the design and implementation of R2, as

described before. In this section, we intuitively explain why the use of network

coding in R2 is able to provide good overall performance for streaming systems.

First, with network coding, R2 is able to use much larger segments compared

to typical data blocks in pull. The use of larger segments leads to “real time”

exchanges of buffer maps without additional overhead (or even with less over-

head!). With up-to-date buffer maps in R2, participating peers are able to serve

each other better. While in pull, buffer maps are exchanged in a periodic fash-

ion. As shown in [ZZSY07, FLL09], the lack of timely exchanges of buffer maps

may be a major factor that separates the actual performance of pull from opti-

mality.

Second, with network coding, peers in R2 perform push operations rather than

pull operations, thereby making a better use of their upload bandwidth resources.

More importantly, even slow overlay connections may be utilized in R2, which

is generally impossible in pull [ZZSY07]. In short, all these factors contribute

to a better utilization of peer bandwidth resources, leading to a higher playback

quality and reduced server bandwidth costs.

Third, with network coding, robustness to peer departures in R2 can be sig-

nificantly enhanced. Since multiple upstream peers are serving a segment at the

same time, the departure of a few of them does not constitute a challenge. In

contrast, a missing block in pull can only be served by one upstream peer at a

time. Whenever an upstream peer leaves the system suddenly, the downstream

peer has to find it out and request the missing block again. If this block is close

to its playback deadline, the unlucky downstream peer is indeed under the risk

of missing a deadline.

Last but not least, with network coding, R2 scales well to accommodate a large

flash crowd. Recall that the use of network coding enables synchronized playback

in R2. With playback buffers overlapping as much as possible, newly arrived peers

during a flash crowd are able to help one another immediately after they have

received a few coded blocks. This allows full utilization of upload bandwidth

from new peers, which in turn greatly improves scalability of streaming systems.

1.2.3 Theoretical results on P2P multimedia streaming with network coding

In this section, we present a number of analytical results on the performance of

P2P streaming systems with network coding, with a focus on the fundamental

Network Coding for Content Distribution and Multimedia Streaming in P2P Networks 15

limits and achievable performances of R2. For the sake of mathematical tractabil-

ity, we make a few assumptions in the system model. The key notations involved

is summarized in Table 1.1 for easy reference.

Table 1.1. Key Notations in the System Model

Ui Upload capacity of a class-i peer (in blocks per second).

Up Average upload capacity of participating peers.

Us Server upload capacity (in blocks per second).

R Streaming rate (in blocks per second).

D Initial buffering delay (in seconds).

N Scale of a flash crowd (the number of participating peers in the system).

k Number of data blocks in each segment.

δ Server strength (= Us

NUp

).

First, in accordance with measurement studies of existing P2P systems (e.g.,

[GCXTDZ03]), we assume peer upload capacities are the only bottlenecks in

the streaming system. Second, to characterize the heterogeneity in terms of peer

upload capacities, we adopt the two-class model in [Kumar07], in which peers

in the system are broadly classified into two classes, with each class having

approximately the same upload capacity2. We use Up to denote the average

upload capacity of participating peers and Us to denote the upload capacity of

a dedicated streaming server (if multiple streaming servers exist, they can be

regarded as a virtual “super-server”).

We are now in a position to discuss several fundamental performance limits

for P2P streaming systems with network coding. First of all, we observe that

the total bandwidth consumption should be no greater than the total bandwidth

supply. This leads to the following theorem, which has been proved in [Kumar07].

Theorem 1.2 ([Kumar07]). The maximum streaming rate Rmax is given by

Rmax = Up +
Us

N
,

where N is the number of participating peers in the system.

Second, let us consider the buffering delay for all participating peers in the

system to buffer a segment. On the one hand, since a segment consists of k

data blocks, at least kN block transmissions are needed for N peers to buffer

a segment. On the other hand, the aggregate upload rate is upper bounded by

2 This assumption is reasonable as there are roughly two classes of peers in P2P streaming

systems — high bandwidth Ethernet peers and low bandwidth DSL peers. Although only

two classes are assumed here, the analysis is easily extended to the case of multiple classes

in the system.

16 Chapter 1. Network Coding for Content Distribution and Multimedia Streaming in P2P Networks

Us + NUp, since a peer cannot serve a segment unless it has received at least one

coded block in this segment. Thus we have the following limit on the buffering

delay

Theorem 1.3. Let Ds be the random variable denoting the buffering delay for a

segment (the time required by all the peers in the system to receive the segment)

under the system model described as above. Then for any given push strategy,

E[Ds] ≥
kN

Us + NUp

,

where N is the number of participating peers in the system, and k is the number

of data blocks in each segment.

Note that at least one segment should be buffered to ensure smooth playback.

By Theorem 1.3, it takes at least E[Ds] seconds in expectation for participating

peers to achieve so. In other words, Theorem 1.3 provides a lower bound for the

shortest initial buffering delay during a flash crowd.

Given the above performance limits, we shall answer the following two ques-

tions:

⊲ What is the sufficient condition for R2 to achieve good overall performance?

⊲ How far from optimality is the performance of R2?

These questions are crucial for understanding the fundamental properties and

limitations of R2. We mainly focus on the flash crowd scenario here, since it

poses unique challenges in the streaming system design, as observed in various

measurement studies [Ross06, XLKZ07]. We refer readers to [FL08] for analysis

under other peer dynamic patterns.

During a flash crowd, a large number of peers join the system within a short

period of time, just after a new live event has been released. To model a flash

crowd event, we assume time is slotted in the sense that it takes one time slot

to playback a segment. We further assume that all participating peers join the

system within one time slot. We emphasize here these assumptions are not nec-

essary, and can easily be relaxed in the analysis. We now introduce the following

definitions.

Definition 1.1. The scale of a flash crowd, denoted by N , is defined as the

maximum number of peers joining the system during a flash crowd event.

Definition 1.2. The server strength, denoted by δ, is defined as follows:

δ =
Us

NUp

,

where Up is the average upload capacity of participating peers, and Us is the

server upload capacity.

Network Coding for Content Distribution and Multimedia Streaming in P2P Networks 17

Before we venture into theoretical analysis of R2, we shall specify all design

choices, since R2 is not a strict protocol design, as discussed in Section 1.2.1.

Indeed, we adopt a simple random push strategy in the analysis. More specifi-

cally, whenever a peer has a chance to serve, it chooses a partner uniformly at

random from its neighbors, and uploads a coded block in the most urgent seg-

ment on that partner, that is, the segment closest to the playback point yet not

completely received.

The following theorem establishes a sufficient condition on smooth playback

at a streaming rate R during any flash crowd with scale N .

Theorem 1.4 ([FL08]). Suppose the underlying overlay network is fully con-

nected. Assume that the following condition holds:

Us + NUp ≥ (1 + ε)NR, (1.3)

where ε is given by

ε = γ(q) +
ln(1 + δ) − ln δ

k
, (1.4)

and γ(q) is a system-wide parameter denoting the fraction of linearly dependent

coded blocks induced by random linear network coding (which depends on the field

size q). Then R2 is able to achieve smooth playback at a streaming rate R under

a simple random push strategy described as above, when the scale N of the flash

crowd is sufficiently large.

Combining Theorem 1.4 with Theorem 1.2 and 1.3, we are able to characterize

the performance gap between R2 and the optimal streaming scheme with regard

to the sustainable streaming rate and initial buffering delay.

Corollary 1.1. Suppose the underlying overlay network is fully connected. Then

R2 achieves a factor of 1 + ε of the maximum streaming rate Rmax under a simple

random push strategy, where ε is given in (1.4).

Corollary 1.2. Suppose the underlying overlay network is fully connected. Then

R2 achieves a factor of 2(1 + ε) of the minimum initial buffering delay under a

simple random push strategy, where ε is given in (1.4).

Corollary 1.1 and 1.2 demonstrate that R2 is able to support a near-optimal

streaming rate with short initial buffering delays during a flash crowd, even with

a simple random push strategy. Here we present a concrete numerical example to

better illustrate this point. As shown in [FL08], the parameter γ(q) is typically in

the order of 0.1% for large q (q ≥ 64). Hence we set γ(q) = 0.1% in our example.

We next set the server strength δ to 0.001, and the number of data blocks in

each segment k to 100 in our example. Then the sustainable streaming rate R

18 Chapter 1. Network Coding for Content Distribution and Multimedia Streaming in P2P Networks

satisfies R ≥ Rmax/1.07, with initial buffering delays within a factor of 2.14 of

the limit.

Notice that in above theorems, the overlay network is represented by a com-

plete graph. However, in practical steaming systems, each participating peer only

maintains a limited number of neighbors. Thus it is of great interest to investigate

the impact of restricted neighborhood. Simulation results in [FL08] demonstrate

that a small size of neighborhood (such as 50) is good enough to enjoy good

overall performance in R2.

1.2.4 Practical aspects of P2P multimedia streaming with network coding

The design philosophy of R2 has been applied and implemented in UUSee — a

large-scale operational streaming system operated by UUSee Inc. (one of the lead-

ing peer-assisted media content providers in China). With 200 Gigabytes worth

of real-world traces collected and analyzed, it has been reported in [LWLZ10]

that the theoretical benefit of using network coding can be achieved in practice:

multiple upstream peers are allowed to collaboratively serve a downstream peer,

leading to minimized buffering delays and serve bandwidth costs. In particu-

lar, the overall performance has been satisfactory for normal-quality videos in

UUSee. For high-quality videos, the buffering delay could be larger due to the

high bandwidth demand. Nevertheless, the UUSee measurements suggest that

the delay is in general below a reasonable 20 seconds.

Any advantages may come with tradeoffs. We shall now look at the flip side

of the coin — some practical issues in R2 — to get a complete picture. Similar

to content distribution applications, the computational cost of network coding is

again a major concern for multimedia streaming applications. Even with mod-

ern processors, it may not be computationally feasible to support more than a

few hundred data blocks in each segment. On the other hand, the use of large

segments and small blocks is a key to the success of R2, as explained before.

Therefore, one shall maximize the number of data blocks in each segment and

minimize the block size, subject to practical constraints.

For example, each segment in R2 is divided into 128 data blocks of 2 KB each.

With this design choice, good overall performance has been observed, but at the

cost of sustained high CPU usage. In other words, we cannot afford a larger

number of data blocks in each segment due to CPU constraint. Shall we choose

a smaller block size in R2? Note that the overhead in terms of the “header” is

around 6% for this design choice, when the field size q = 256. Thus a smaller

block size may lead to excessive overhead. To summarize, there is a trade-off

between performance, computational cost and overhead. One shall find the right

compromise for any particular streaming system.

Another practical concern in R2 is the braking redundancy. Recall that a down-

stream peer sends a new buffer map to all its neighbors immediately after it has

completely received a segment. This buffer map is also used as a signal to stop

upstream peers from serving the segment. As it takes time for the braking signal

Network Coding for Content Distribution and Multimedia Streaming in P2P Networks 19

to reach upstream peers, a downstream peer may receive additional redundant

blocks after a segment is complete. How shall we minimize this braking redun-

dancy? One engineering approach is to allow an “early braking” mechanism,

which encourages a downstream peer to stop a subset of its upstream peers even

before a segment is completely received. However, the design of such a “early

braking” algorithm still remains a challenge.

Finally, a possible drawback of R2 is that the time between the occurrence of

a live event and its playback is the same across the board in all participating

peers due to synchronized playback. Though harmful to some applications, this

may be an advantage to those involving live interaction (such as live voting with

SMS): all participating peers will view the same content at the same time, such

that interactive behavior starts to occur at the same time as well.

1.3 Conclusion

The main objective of this chapter is to explore the potential benefits that net-

work coding may offer in P2P networks. In particular, we have addressed two

major applications: content distribution and multimedia streaming. To achieve

this goal, we first describe how network coding can be successfully used in each

application. We then provide a number of key insights on the advantages offered

by network coding.

⊲ In P2P content distribution, we have shown that the use of network coding

solves the block scheduling problem in a surprisingly simple and effective

way, leading to a shorter file downloading time and better robustness to peer

departures.

⊲ In P2P multimedia streaming, we have shown that a complete redesign of

streaming protocols is required in order to take full advantages of network

coding. In particular, we have presented R2 — a new streaming system design

with network coding — and explained why the use of network coding in R2

is able to fully utilize available bandwidth resources, thereby improving the

overall system performance.

To deepen understanding of these claimed advantages, we further provide a num-

ber of selected theoretical results. Finally, we present several practical issues that

deserve special attention in real-world system design. We believe such an explo-

ration could shed light on future applications of network coding in P2P networks.

References

[C03] B. Cohen. Incentives Build Robustness in BitTorrent. 1st Workshop on

Economics of Peer-to-Peer Systems, (Berkeley, CA), June 5-6, 2003.

[PGES05] J. Pouwelse, P. Garbacki, D. Epema and H. Sips. The Bittorrent P2P

File-sharing System: Measurements and Analysis. Proc. of 4th International

Workshop on Peer-to-Peer Systems (IPTPS), (Ithaca, New York), Feb. 24-25,

2005.

[GR05] C. Gkantsidis and P. Rodriguez. Network Coding for Large Scale Con-

tent Distribution. Proc. of IEEE INFOCOM 2005, (Miami, FL), March 13-17,

2005.

[GMR06] C. Gkantsidis, J. Miller and P. Rodriguez. Anatomy of a P2P Content

Distribution System with Network Coding. Proc. of 5th International Work-

shop on Peer-to-Peer Systems (IPTPS), (Santa Barbara, CA), Feb. 27-28,

2006.

[Y07] R. W. Yeung. Avalanche: A Network Coding Analysis. Communications

in Information and Systems, vol. 7, pp. 353-358, 2007.

[W06] Yunnan Wu. A Trellis Connectivity Analysis of Random Linear Network

Coding with Buffering. Proc. of International Symposium on Information The-

ory (ISIT), (Nice, France), June 24-29, 2007.

[HKMESK06] T. Ho, R. Koetter, M. Medard, M. Effros, J. Shi and D. Karger. A

Random Linear Network Coding Approach to Multicast. IEEE Transactions

on Information Theory, vol. 52, pp. 4413-4430, October 2006.

[DMC06] S. Deb, M. Medard and C. Choute. Algebraic Gossip: A Network

Coding Approach to Optimal Multiple Rumor Mongering. IEEE Transactions

on Information Theory, vol. 52, pp. 2486-2507, June 2006.

[CWJ03] P. Chou, Y. Wu and K. Jain. Practical Network Coding. Proc. of Aller-

ton Conference on Communication, Control, and Computing, (Monticello, Illi-

nois), Oct. 2003.

[MHL06] P. Maymounkov, N. J. A. Harvey and D. S. Lun. Methods for Efficient

Network Coding. Proc. of Allerton Conference on Communication, Control,

and Computing, (Monticello, Illinois), Oct. 1-3, 2006.

[NL07] D. Niu and B. Li. On the Resilience-Complexity Tradeoff of Network

Coding in Dynamic P2P Networks. Proc. of 15th IEEE International Work-

shop on Quality of Service (IWQoS), (Evanston, IL), June 2007.

References 21

[WL06] M. Wang and B. Li. How Practical is Network Coding?. Proc. of 14th

IEEE International Workshop on Quality of Service (IWQoS), (New Haven,

CT), June 19-21, 2006.

[VYF06] V. Venkataraman, K. Yoshida and P. Francis. Chunkyspread: Hetero-

geneous Unstructured Tree-based Peer-to-Peer Multicast. Proc. of 14th IEEE

International Conference on Network Protocols (ICNP), (Santa Barbara, CA),

Nov. 12-15, 2006.

[XLKZ07] S. Xie, B. Li, G.-Y. Keung, and X. Zhang. Coolstreaming: Design,

Theory, and Practice. IEEE Transactions on Multimedia, vol. 9, pp. 1661-1671,

December 2007.

[HFCLH08] Y. Huang, Z. J. Fu, D. M. Chiu, C.S. Lui and C. Huang. Chal-

lenges, Design and Analysis of a Large-scale P2P VoD System. Proc. of ACM

Sigcomm, (Seattle, WA), Aug. 17-22, 2008.

[WL07] M. Wang and B. Li. Lava: A Reality Check of Network Coding in Peer-

to-Peer Live Streaming. Proc. of IEEE INFOCOM, (Anchorage, Alaska), May

6-12, 2007.

[WLi07] M. Wang and B. Li. R2: Random Push with Random Network Coding

in Live Peer-to-Peer Streaming. IEEE J. on Sel. Areas in Communications,

vol. 25, pp. 1655-1666, Dec. 2007.

[ZZSY07] M. Zhang, Q. Zhang, L. Sun and S. Yang. Understanding the Power

of Pull-based Streaming Protocol: Can We Do Better? IEEE J. on Sel. Areas

in Communications, vol. 25, pp. 1678-1694, Dec. 2007.

[FLL09] C. Feng, B. Li and B. Li. Understanding the Performance Gap between

Pull-based Mesh Streaming Protocols and Fundamental Limits. Proc. of IEEE

INFOCOM, (Rio de Janeiro, Brazil), April 19-25, 2009.

[GCXTDZ03] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding and X. Zhang. Measure-

ments, Analysis, and Modeling of BitTorrent-like Systems. Proc. of Internet

Measurement Conference (IMC), (Berkeley, CA), Oct. 19-21, 2005.

[Kumar07] R. Kumar, Y. Liu and K. W. Ross. Stochastic Fluid Theory for P2P

Streaming Systems. Proc. of IEEE INFOCOM, (Anchorage, Alaska), May 6-

12, 2007.

[LWLZ10] Zimu Liu, Chuan Wu, Baochun Li and Shuqiao Zhao. UUSee: Large-

Scale Operational On-Demand Streaming with Random Network Coding.

Proc. of IEEE INFOCOM, (San Diego, California), March 15-19, 2010.

[Ross06] X. Hei, C. Liang, J. Liang, Y. Liu and K. W. Ross. A Measurement

Study of a Large-Scale P2P IPTV System. IEEE Transactions on Multimedia,

vol. 9, pp. 1672-1687, Dec. 2007.

[FL08] C. Feng and B. Li. On Large-Scale Peer-to-Peer Streaming Systems with

Network Coding. Proc. of ACM Multimedia, (Vancouver, BC), Oct. 27 - Nov.

1, 2008.

[KK08] R. Koetter and F. R. Kschischang. Coding for errors and erasures in

random network coding. IEEE Trans. on Information Theory, vol. 54, pp.

3579-3591, Aug. 2008.

22 References

[WHLC09] Yunnan Wu, Y. C. Hu, J. Li and P. A. Chou. The Delay Region for

P2P File Transfer. Proc. of International Symposium on Information Theory

(ISIT), (Coex, Seoul, Korea), June 28-July 3, 2009.

[CHEML10] C. S. Chang, T. Ho, M. Effros, M. Medard and B. Leong. Issues

in Peer-to-Peer Networking: a Coding Optimization Approach. Proc. of the

2010 IEEE International Symposium on Network Coding (NetCod), (Toronto,

Canada), June, 2010.

[DGWWR10] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. Wainwright and K.

Ramchandran. Network Coding for Distributed Storage Systems. IEEE Trans.

on Information Theory, vol. 56, pp. 4539-4551, Sep. 2010.

[ADMK05] S. Acedanski, S. Deb, M. Mdard and R. Koetter. How Good is Ran-

dom Linear Coding Based Distributed Networked Storage? First Workshop on

Network Coding, Theory, and Applications (NetCod), (Riva del Garda, Italy),

April 2005.

