
ar
X

iv
:1

10
7.

11
38

v4
 [

cs
.M

M
]

30
 O

ct
 2

01
2

Celerity: A Low-Delay Multi-Party Conferencing Solution

Xiangwen Chen
Dept. of Information

Engineering
The Chinese University of

Hong Kong

Minghua Chen
Dept. of Information

Engineering
The Chinese University of

Hong Kong

Baochun Li
Dept. of Electrical and
Computer Engineering
University of Toronto

Yao Zhao
Alcatel-Lucent

Yunnan Wu
Facebook Inc.

Jin Li
Microsoft Research at

Redmond

ABSTRACT
In this paper, we attempt to revisit the problem of multi-party con-
ferencing from a practical perspective, and to rethink the design
space involved in this problem. We believe that an emphasis on
low end-to-end delays between any two parties in the conference
is a must, and the source sending rate in a session should adapt
to bandwidth availability and congestion. We presentCelerity, a
multi-party conferencing solution specifically designed to achieve
our objectives. It is entirely Peer-to-Peer (P2P), and as such elim-
inating the cost of maintaining centrally administered servers. It
is designed to deliver video with low end-to-end delays, at quality
levels commensurate with available network resources overarbi-
trary network topologies wherebottlenecks can be anywhere in the
network. This is in contrast to commonly assumed P2P scenarios
where bandwidth bottlenecks reside only at the edge of the net-
work. The highlight in our design is a distributed and adaptive rate
control protocol, that can discover and adapt to arbitrary topolo-
gies and network conditions quickly, converging to efficient link
rate allocations allowed by the underlying network. In accordance
with adaptive link rate control, source video encoding rates are also
dynamically controlled to optimize video quality in arbitrary and
unpredictable network conditions. We have implementedCelerity
in a prototype system, and demonstrate its superior performance
over existing solutions in a local experimental testbed andover the
Internet.

1. INTRODUCTION
With the availability of front-facing cameras in high-end smart-

phone devices (such as the Samsung Galaxy S and the iPhone 4),
notebook computers, and HDTVs,multi-partyvideo conferencing,
which involves more than two participants in a live conferencing
session, has attracted a significant amount of interest fromthe in-
dustry. Skype, for example, has recently launched a monthly-paid
service supporting multi-party video conferencing in its latest ver-
sion (Skype 5) [1]. Skype video conferencing has also been re-
cently supported in a range of new Skype-enabled televisions, such
as the Panasonic VIERA series, so that full-screen high-definition
video conferencing can be enjoyed in one’s living room. Moreover,
Google has supported multi-party video conferencing in itslatest
social network serviceGoogle+. And Facebook cooperating with
Skype plans to provide video conferencing service to its billions
of users. We argue that these new conferencing solutions have the
potential to provide an immersive human-to-human communica-
tion experience among remote participants. Such an argument has

been corroborated by many industry leaders: Cisco predictsthat
video conferencing and tele-presence traffic will increase ten-fold
between 2008-2013 [2].

While traffic flows in a live multi-party conferencing session are
fundamentally represented by a multi-way communication process,
today’s design of multi-party video conferencing systems are engi-
neered in practice by composing communication primitives (e.g.,
transport protocols) over uni-directional feed-forward links, with
primitive feedback mechanisms such as various forms of acknowl-
edgments in TCP variants or custom UDP-based protocols. We
believe that a high-quality protocol design must harness the full po-
tential of the multi-way communication paradigm, and must guar-
antee the stringent requirements of low end-to-end delays,with the
highest possible source coding rates that can be supported by dy-
namic network conditions over the Internet.

From the industry perspective, known designs of commercially
available multi-party conferencing solutions are either largely server-
based, e.g., Microsoft Office Communicator, or are separated into
multiple point-to-point sessions (this approach is calledSimulcast),
e.g., Apple iChat. Server-based solutions are susceptibleto central
resource bottlenecks, and as such scalability becomes a main con-
cern when multiple conferences are to be supported concurrently.
In the Simulcast approach, each user splits its uplink bandwidth
equally among all receivers and streams to each receiver separately.
Though simple to implement, Simulcast suffers from poor quality
of service. Specifically, peers with low upload capacity areforced
to use a low video rate that degrades the overall experience of the
other peers.

In the academic literature, there are recently several studies on
peer-to-peer (P2P) video conferencing from a utility maximization
perspective [3–8]. Among them, Liet al. [3] and Chenet al. [4]
may be the most related ones to this work (we call their unified
approach Mutualcast). They have tried to support content distribu-
tion and multi-party video conferencing in multicast sessions, by
maximizing aggregate application-specific utility and theutiliza-
tion of node uplink bandwidth in P2P networks. Specific depth-1
and depth-2 tree topologies have been constructed using tree pack-
ing, and rate control was performed in each of the tree-basedone-
to-many sessions.However, they only considered the limited sce-
nario where bandwidth bottlenecks reside at the edge of the net-
work, while in practice bandwidth bottlenecks can easily reside in
the core of the network [9, 10]. Further, all existing industrial and
academic solutions, including Mutualcast, did not explicitly con-
sider bounded delay in designs, and can lead to unsatisfied interac-
tive conferencing experience.

http://arxiv.org/abs/1107.1138v4

1.1 Contribution
In this paper, we reconsider the design space in multi-partyvideo

conferencing solutions, and presentCelerity, a new multi-party con-
ferencing solution specifically designed to maintain low end-to-end
delays while maximizing source coding rates in a session.Celerity
has the following salient features:

• It operates in a pure P2P manner, and as such eliminating the
cost of maintaining centrally administered servers.

• It can deliver video at quality levels commensurate with avail-
able network resources overarbitrary network topologies,
while maintainingbounded end-to-end delays.

• It can automatically adapt to unpredictable network dynam-
ics, such as cross traffic and abrupt link failures, allowing
smooth conferencing experience.

Enabling the above features for multi-party conferencing is chal-
lenging. First, it requires a non-trivial formulation thatallows sys-
tematic solution design over arbitrary network capacity constraints.
In contrast, existing P2P system design works with performance
guarantee commonly assume bandwidth bottlenecks reside atthe
edge of the network. Second, maximizing session rates subject to
bounded delay is known to be NP-Complete and hard to solve ap-
proximately [11]. We take a practical approach in this paperthat ex-
plores all 2-hop delay-bounded overlay trees with polynomial com-
plexity. Third, detecting and reacting to network dynamicswithout
a priori knowledge of the network conditions are non-trivial. We
use both delay and loss as congestion measures and adapt the ses-
sion rates with respect to both of them, allowing early detection and
fast response to unpredictable network dynamics.

The highlight in our design is a distributed rate control proto-
col, that can discover and adapt to arbitrary topologies andnetwork
conditions quickly, converging to efficient link rate allocations al-
lowed by the underlying network. In accordance with adaptive link
rate control, source video encoding rates are also dynamically con-
trolled to optimize video quality in arbitrary and unpredictable un-
derlay network conditions.

The design ofCelerity is largely inspired by our new formula-
tion that specifically takes into account arbitrary networkcapacity
constraints and allows us to explore design space beyond those in
existing solutions. Our formulation is overlay link based and has
a number of variables linear in the number of overlay links. This
is a significant reduction as compared to the number of variables
exponential in the number of overlay links in an alternativetree-
based formulation. We believe our approach is applicable toother
P2P system problems, to allow solution design beyond the common
assumption in P2P scenarios that the bandwidth bottlenecksreside
only at the edge of the network.

We have implemented a prototypeCelerity system using C++.
By extensive experiments in a local experimental testbed and on
the Internet, we demonstrate the superior performance ofCelerity
over state-of-the-art solutions Simulcast and Mutualcast.

1.2 Paper Organization
The rest of this paper is organized as follows. In Section 2, we

introduce a general formulation for the multi-party conferencing
problem; existing solutions can be considered as algorithms solv-
ing its special cases. We present and discuss the designs of two crit-
ical components ofCelerity, the tree packing module and the link
rate control module, in Sections 3 and 4, respectively. We present
the practical implementation ofCelerityin Section 5 and the exper-
imental results in Section 6. Finally, we conclude in Section 7. We
leave all the proofs and pseudo codes in the Appendix.

Notation Definition
L Set of all physical links
V Set of conference participating nodes
E Set of directed overlay links
Cl Capacity of the physical linkl
al,e Whether overlay linke passes physical linkl
cm,e Rate allocated to sessionm on overlay linke
cm Overlay link rates of streamm, cm = [cm,e,e ∈ E]
c Overlay link rates of all streams,c = [cT

1 , . . . , c
T
M]T

y Total overlay link traffics,y =
∑M

m=1 cm

D Delay bound
Rm (cm,D) Sessionm’s rate within the delay boundD
ql(z) Price function of violating linkl’s capacity constraint
pl Lagrange multiplier of linkl’s capacity constraint
G (c, p) Lagrange function of variablesc and p

Note: we use bold symbols to denote vectors.

Table 1: Key notations.

2. PROBLEM FORMULATION AND CELER-
ITY OVERVIEW

One way to design a multi-party conferencing system is to for-
mulate its fundamental design problem, explore powerful theoreti-
cal techniques to solve the problem, and use the obtained insights
to guide practical system designs. In this way, we can also beclear
about potential and limitation of the designs, allowing easy system
tuning and further systematic improvements. Table 1 lists the key
notations used in this paper.

2.1 Settings
Consider a network modeled as a directed graphG = (N ,L),

whereN is the set of all physical nodes, including conference par-
ticipating nodes and other intermediate nodes such as routers, and
L is the set of all physical links. Each linkl ∈ L has a nonnegative
capacityCl and a nonnegative propagation delaydl .

Consider a multi-party conferencing system overG. We useV ⊆
N to denote the set of all conference participating nodes. Every
node inV is a source and at the same time a receiver for every other
nodes. Thus there are totallyM , |V| sessions of (audio/video)
streams. Each stream is generated at a source node, sayv, and needs
to be delivered to all the rest nodes inV−{v}, by using overlay links
between any two nodes inV.

An overlay link (u, v) meansu can send data tov by setting up
a TCP/UDP connection, along an underlay path fromu to v pre-
assigned by routing protocols. LetE be the set of all directed over-
lay links. For alle ∈ E andl ∈ L, we define

al,e =















1, if overlay link e passes physical linkl;

0, otherwise.
(1)

The physical link capacity constraints are then expressed as

aT
l y =

∑

e∈E

al,e

M
∑

m=1

cm,e ≤ Cl , ∀l ∈ L,

wherecm,e denotes the rate allocated to sessionm on overlay linke
andaT

l y describes the total overlay traffic passing through physical
link l.

Remark: In our model, the capacity bottleneck can be anywhere
in the network, not necessarily at the edges. This is in contrast to
a common assumption made in previous P2P works that the up-
links/downlinks of participating nodes are the only capacity bottle-
neck.

2.2 Problem Formulation
In a multi-party conferencing system, each session source broad-

casts its stream to all receivers over a complete overlay graph on
which every linkehas a ratecm,e and a delay

∑

l∈L al,edl . For smooth
conferencing experience, the total delay of delivering a packet from
the source to any receiver, traversing one or multiple overlay links,
cannot exceed a delay boundD.

A fundamental design problem is to maximize the overall con-
ferencing experience, by properly allocating the overlay link rates
to the streams subject to physical link capacity constraints. We for-
mulate the problem as a network utility maximization problem:

MP : maxc≥0

M
∑

m=1

Um (Rm(cm,D)) (2)

s.t. aT
l y ≤ Cl , ∀l ∈ L. (3)

The optimization variables arec and the constraints in (3) are the
physical link capacity constraints.

Rm(cm,D) denotes sessionm’s rate that we obtain by using re-
sourcecm within the delay bound D, and is a concave function of
cm as we will show in Corollary 1 in the next section.

The objective is to maximize the aggregate system utility.Um(Rm)
is an increasing and strictly concave function that maps thestream
rate to an application-specific utility. For example, a commonly
used video quality measure Peak Signal-to-Noise Ratio (PSNR)
can be modeled by using a logarithmic function as the utility[4]
1. With these settings and observations,Um(Rm) is concave inc and
the problemMP is a concave optimization problem.

Remarks: (i) The formulation ofMP is an overlay link based
formulation in which the number of variables per session is|E| and
thus at most|V|2. One can write an equivalent tree-based formula-
tion for MP but the number of variables per session will beexpo-
nential in |E| and|V|. (ii) Existing solutions, such as Simulcast and
Mutualcast, can be thought as algorithms solving special cases of
the problemMP. For example, Simulcast can be thought as solving
the problemMP by using only the 1-hop tree to broadcast content
within a session. Mutualcast can be thought as solving a special
case of the problemMP (with the uplinks of participating nodes
being the only capacity bottleneck) by packing certain depth-1 and
depth-2 trees within a session.

2.3 Celerity Overview
Celerity builds upon two main modules to maximize the sys-

tem utility: (1) adelay-bounded video deliverymodule to distribute
video at high rate given overlay link rates (i.e., how to compute and
achieveRm(cm,D)); (2) a link rate controlmodule to determinecm.

Video delivery under known link constraints: This problem is
similar to the classic multicast problem, and packing spanning (or
Steiner) trees at the multicast source is a popular solution. How-
ever, the unique “delay-bounded” requirement in multi-party con-
ferencing makes the problem more challenging. We introducea
delay-bounded tree packing algorithm to tackle this problem (de-
tailed in Section 3).

Link rate control : In principle, one can first infer the network
constraints and then solve the problemMP centrally. However,
directly inferring the constraints potentially requires knowing the
entire network topology and is highly challenging. InCelerity, we
resort to design adaptive and iterative algorithms for solving the
problemMP in a distributed manner, withouta priori knowledge
of the network conditions (detailed in Section 4).
1Using logarithmic functions also guarantees (weighted) propor-
tional fairness among sessions and thus no session will starve at
the optimal solution [12].

�

�

�

�

����	
��

���

���	
��

���

� �

Figure 1: An illustrating example of 4-party (A, B, C, andD) con-
ferencing over a dumbbell underlay topology.E and F are two
routers. Solid lines represent underlay physical links. Tomake
the graph easy to read, we use one solid line to represent a pair of
directed physical links. Dash lines represent overlay links.

We high-levelly explain howCelerityworks in a 4-party confer-
encing example in Fig. 1. We focus on sessionA, in which source
A distributes its stream to receiversB, C, andD, by packing delay-
bounded trees over a complete overlay graph shown in the figure.
We focus on sourceA and one overlay link (B,C), which represents
a UDP connection over an underlay pathB to E to F to C. Other
overlay links and other sessions are similar.

We first describe the control plane operations. For the overlay
link (B,C), the head nodeB works with the tail nodeC to peri-
odically adjust the session ratecA,B→C according toCelerity’s link
rate control algorithm. Such adjustment utilizes control-plane in-
formation that sourceA piggybacks with data packets, and loss and
delay statistics experienced by packets traveling fromB to C. We
show such local adjustments at every overlay link result in globally
optimal session rates.

The head nodeB alsoperiodically reports to sourceA the ses-
sion ratecA,B→C and the end-to-end delay fromB to C. Based on
these reports from all overlay links, sourceA periodically packs
delay-bounded trees usingCelerity’s tree-packing algorithm, cal-
culates necessary control-plane information, and delivers data and
the control-plane information along the trees.

The data plane operations are simple.Celerityuses delay-bounded
trees to distribute data in a session. Nodes on every tree forward
packets from its upstream parent to its downstream children, fol-
lowing the “next-children” tree-routing information embedded in
the packet header.Celerity’s tree-packing algorithm guarantees that
(i) packets arrive at all receivers within the delay bound, and (ii) the
total rate of a sessionm passing through an overlay linke does not
exceed the allocated ratecm,e.

In the following two sections, we first present the designs ofthe
two main modules inCelerity. We then describe how they are im-
plemented in physical peers in Section 5.

3. PACKING DELAY-BOUNDED TREES
Given the link rate vectorcm and delay for every overlay linke

(i.e.,
∑

l∈L al,edl), achieving the maximum broadcast/multicast stream
rate under a delay boundD is a challenging problem. A general
way to explore the broadcast/multicast rate under delay bounds is to
pack delay-bounded Steiner trees. However, such problem isNP-
hard [13]. Moreover, the number of delay-bounded Steiner trees to
consider is in general exponential in the network size.

In this paper, we pack 2-hop delay-bounded trees in an overlay
graph of sessionm, denoted byDm, to achieve a good stream rate
under a delay bound. Note by graph theory notations, a 2-hop tree
has a depth at most 2. Packing 2-hop trees is easy to implement.
It also explores all overlay links between source and receiver and

1
r

2
r

3
r

1
t

2
t 3

t

s

∞ ∞ ∞

Figure 2: Illustration of the directed acyclic sub-graph over which
we pack delay-bounded 2-hop trees.

between receivers, thus trying to utilize resource efficiently. In fact,
it is shown in [3, 4] that packing 2-hop multicast trees suffices to
achieve the maximum multicast rate for certain P2P topologies. We
elaborate our tree-packing scheme in the following.

We first define the overlay graphDm. GraphDm is a directed
acyclic graph with two layers; one example of such graph is illus-
trated in Fig. 2. In this example, consider a session with a source
s, three receivers 1,2, 3. For each receiveri, we draw two nodes,
r i andti, in the graphDm; ti models the receiving functionality of
nodei andr i models the relaying functionality of nodei.

Suppose that the prescribed link bit rates are given by the vector
cm, with the capacity for linke beingcm,e. Then inDm, the link
from s to r i has capacitycm,s→ri , the link fromr i to t j (with i , j)
has capacitycm,ri→t j , and the link fromr i to ti has infinite capacity.
If the propagation delay of an edgee exceeds the delay bound, we
do not include it in the graph. If the propagation delay of a two-hop
paths→ r i → t j exceeds the delay bound, we omit the edge from
r i to t j from the graph. As a result, every path froms to any receiver
ti in the graph has a path propagation delay within the delay bound.

Over such 2-layer sub-graphDm, we pack 2-hop trees connect-
ing the source and every receiver using the greedy algorithmpro-
posed in [14]. Below we simply describe the algorithm and more
details can be found in [14].

Assuming all edges have unit-capacity and allowing multiple
edges for each ordered node pair. The algorithm packs unit-capacity
trees one by one. Each unit-capacity tree is constructed by greed-
ily constructing a tree edge by edge starting from the sourceand
augmenting towards all receivers. It is similar to the greedy tree-
packing algorithm based on Prim’s algorithm. The distinction lies
in the rule of selecting the edge among all potential edges. The edge
whose removal leads to least reduction in the multicast capacity of
the residual graph is chosen in the greedy algorithm.

We show a simple example to illustrate how the tree packing al-
gorithm works. Fig. 3 shows the process of packing a unit-capacity
tree over a 2-layer sub-graph. In this example,s is source andt1, t2,
t3 are three receivers, each edge froms to r i (i = 1, 2,3) and from
r i to t j (i , j) has unit capacity. The∞ associated with the edge
betweenr i andti means the edge has infinite capacity.

The tree packing algorithm maintains a “connected set”, denoted
by T , that contains all the nodes that can be reached froms during
the tree construction process. Initially,T = {s} contains only the
sources. In each step, the algorithm adds and connects one more
node to the tree and appends the node intoT . The algorithm finds
a tree whenT contains all the receivers.

Seen from Fig. 3, in Step 1, the algorithm evaluates the links
starting from source and greedily picks the edge whose removal
gives the smallest reduction of the multicast capacity in the residual
graph. In this example, any edge leavings can be chosen because

their removals give the same reduction. Our algorithm randomly
picks one such equally-good edge, in this case say edges → r1.
The algorithm adds noder1 intoT and amends it to beT = {s, r1}.

In Step 2, the algorithm evaluates the edges originated fromany
node inT . In this case it picks edger1 → t1 and amendsT to be
{s, r1, t1}. The algorithm repeats the process until all the receivers
are inT , which is Step 4 in this example. The algorithm then
successfully constructs a unit-capacity trees → r1 → {t1, t2, t3}.
Afterwards, the algorithm resetsT = {s} and constructs next tree
in the residual graph until no unit-capacity tree can be further con-
structed.

The above greedy algorithms is very simple to implement and its
practical implementation details are further discussed inSection 5.

Utilizing the special structure of the graphDm, we obtain perfor-
mance guarantee of the algorithm as follows.

Theorem 1. The tree-packing algorithm in [14] achieves the
minimum of the min-cuts separating the source and receiversin
Dm and is expressed as

Rm(cm,D) = min
j

∑

i

min
{

cm,s→ri , cm,ri→t j

}

. (4)

Furthermore, the algorithm has a running time of O(|V||E|2).

Proof: Refer to Appendix A.
Hence, our tree-packing algorithm achieves the maximum delay-

bounded multicast rate over the 2-layer sub-graphDm. The achieved
rateRm(cm,D) is a concave function ofcm as summarized below.

Corollary 1. The delay-bounded multicast rate Rm(cm,D) ob-
tained by our tree-packing algorithm is a concave function of the
overlay link ratescm.

Proof: Refer to Appendix B.

3.1 Pack Delay-bounded Trees With Helpers
Existing

In the previous discussion, we do not involve helpers(a helper
node is neither a source nor a receiver in the conferencing session,
but it is willing to help in distributing content) in our treepacking
algorithm. Actually, this tree packing algorithm can also achieve
the minimum of the min-cuts separating the source and receivers in
Dm even though there exist helpers.

To see how the tree packing algorithm can be applied toDm

which includes helpers, we firstly define the 2-layer sub-graphDm

with helpers existing; one example of such graph is illustrated in
Fig. 4. In this example, consider a session with a sources, three
receivers 1, 2,3, and a heperh1. Similarly, for each receiveri, we
draw two nodes,r i andti , in the graphDm; ti models the receiving
functionality of nodei andr i models the relaying functionality of
nodei.

Suppose that the prescribed link bit rates are given by the vec-
tor cm, with the capacity for linke being cm,e. Then inDm, the
link from s to r i has capacitycm,s→ri , the link from r i to t j (with
i , j) has capacitycm,ri→t j , and the link fromr i to ti has infinite
capacity. Similarly, the link froms to hk(a helper) has capacity
cm,s→hk and the link fromhk to t j has capacitycm,hk→t j . If the prop-
agation delay of an edgee exceeds the delay bound, we do not
include it in the graph. If the propagation delay of a two-hoppath
s→ v (v ∈ {r i} ∪ {hk}) → t j exceeds the delay bound, we omit the
edge fromv to t j from the graph. As a result, every path froms to
any receivert j in the graph has a path propagation delay within the
delay bound.

Over such 2-layer sub-graphDm, we use the same greedy tree
packing algorithm to pack 2-hop trees connecting the sourceand

s

∞

1t 2t 3t

1r 2r 3r
∞ ∞

s

∞

1t 2t 3t

1r 2r 3r
∞ ∞

s

∞

1t 2t 3t

1r 2r 3r
∞ ∞

s

1t 2t 3t

1r 2r 3r

s

1t 2t 3t

1r 2r 3r

s

1t 2t 3t

1r 2r 3r

������ ������ ������

��������	

���

�������������	

����

s

∞

1t 2t 3t

1r 2r 3r
∞ ∞

s

∞

1t 2t 3t

1r 2r 3r
∞ ∞

s

1t 2t 3t

1r 2r 3r

s

1t 2t 3t

1r 2r 3r

�����	 �����

Figure 3: Example of packing a unit-capacity tree, startingfrom s and reaching all receiverst1, t2 and t3, using our greedy tree packing
algorithm.

1
r

2
r

3
r

1
t

2
t 3

t

s

∞ ∞ ∞
� ������

1
h

Figure 4: Illustration of the 2-layer sub-graphDm with a helper
existing

every receiver, and it can still achieve the minimum of the min-cuts
separating the source and receivers inDm , which is discribed as
follows.

Theorem 2. The tree-packing algorithm in [14] achieves the
minimum of the min-cuts separating the source and receiversin
Dm with helpers existing and is expressed as

Rm(cm,D) = min
j

∑

v∈{ri }∪{hk}

min
{

cm,s→v, cm,v→t j

}

. (5)

Furthermore, the algorithm has a running time of O(|V||E|2).

Proof: Refer to Appendix A.
Similarly, the achieved rateRm(cm,D) is a concave function of

cm as summarized below.

Corollary 2. In the 2-layer sub-graphDm with helpers exist-
ing, the delay-bounded multicast rate Rm(cm,D) obtained by our
tree-packing algorithm is a concave function of the overlaylink
ratescm.

Proof: Refer to Appendix B.

4. OVERLAY LINK RATE CONTROL

4.1 Considering Both Delay and Loss
We revise original formulation to design our link rate control

algorithm with both queuing delay and loss rate taken into account.

Adapting link rates to both delay and loss allows early detection
and fast response to network dynamics.

Consider the following formulation with a penalty term added
into the objective function of the problemMP:

MP − EQ : max
c≥0

U(c)
∆
=

M
∑

m=1

Um (Rm(cm,D)) −
∑

l∈L

∫ aT
l y

0
ql (z) dz,(6)

s.t. aT
l y ≤ Cl , ∀l ∈ L, (7)

where
∫ aT

l y

0
ql (z) dz is the penalty associated with violating the ca-

pacity constraint of physical linkl ∈ L, and we choose the price
function to be

ql(z)
∆
=

(z−Cl)+

z
, (8)

where (a)+ = max{a,0}. If all the constraints are satisfied, then the
second term in (6) vanishes; if instead some constraints arevio-
lated, then we charge some penalty for doing so.

Remark: (i) The problemMP-EQ is equivalent to the original
problemMP. Because any feasible solutionc of these two prob-
lems must satisfyaT

l y ≤ Cl , and consequently the penalty term
in the problemMP-EQ vanishes. Therefore, any optimal solu-
tion of the original problemMP must be an optimal solution of
the problemMP-EQ and vice versa. (ii) It can be verified that

−
∑

l∈L

∫ aT
l y

0
ql(z) dz is a concave function inc; hence,U(c) is a

linear combination of concave functions and is concave. However,
becauseRm(cm,D) is the minimum min-cut of the overlay graphDm

with link rates beingcm,U(c) is not a differentiable function [15].
We apply Lagrange dual approach to design distributed algo-

rithms for the problemMP-EQ. The advantage of adopting dis-
tributed rate control algorithms in our system is that it allows robust
adaption upon unpredictable network dynamics.

The Lagrange function of the problem is given by:

G (c, p) ,

M
∑

m=1

Um (Rm(cm,D)) −
∑

l∈L

∫ aT
l y

0
ql (z) dz−

∑

l∈L

pl

(

aT
l y −Cl

)

, (9)

wherepl ≥ 0 is the Lagrange multiplier associated with the capac-
ity constraint in (7) of physical linkl. pl can be interpreted as the

price of using linkl. Since the problemMP-EQ is a concave opti-
mization problem with linear constraints, strong duality holds and
there is no duality gap. Any optimal solution of the problem and
one of its corresponding Lagrangian multiplier is a saddle point of
G (c, p) and vice versa. Thus to solve the problemMP-EQ, it suf-
fices to design algorithms to pursue saddle points ofG (c, p).

4.2 A Loss-Delay Based Primal-Subgradient-
Dual Algorithm

There are two issues to address in designing algorithms for pur-
suing saddle points ofG (c, p). First, the utility functionU(c)
(and consequentlyG (c, p)) is not everywhere differentiable. Sec-
ond,U(c) (and consequentlyG (c, p)) is not strictly concave inc,
thus distributed algorithms may not converge to the desiredsaddle
points under multi-party conferencing settings [4].

To address the first concern, we use subgradient in algorithm
design. To address the second concern, we provide a convergence
result for our designed algorithm.

To proceed, we first compute subgradients ofU(c). The propo-
sition below presents a useful observation.

Proposition 1. A subgradient ofU(c) with respect to cm,e for
any e∈ E and m= 1, . . .M is given by

U′m (Rm)
∂Rm

∂cm,e
−
∑

l∈L

al,e

(aT
l y −Cl)+

aT
l y

where ∂Rm
∂cm,e

is a subgradient of Rm(cm,D) with respect to cm,e.

Proof: Refer to Appendix C.
Motivated by the pioneering work of Arrow, Hurwicz, and Uzawa

[16] and the followup works [17] [18], we propose to use the fol-
lowing primal-subgradient-dualalgorithm to pursue the saddle point
of G (c, p):∀eǫE, m= 1, ...M, ∀lǫL,
Primal-Subgradient-Dual Link Rate Control Algorithm:

c(k+1)
m,e = c(k)

m,e + α

[

U′m
(

R(k)
m

) ∂R(k)
m

∂cm,e

∑

l∈L

al,e
(aT

l y(k) −Cl)+

aT
l y(k)

−
∑

l∈L

al,ep(k)
l

















+

c(k)
m,e

(10)

p(k+1)
l = p(k)

l +
1
Cl

[

aT
l y(k) −Cl

]+

p(k)
l

(11)

whereα > 0 represents a constant the step size for all the iterations,
and function

[b]+a =















max(0,b), a ≤ 0;
b, a > 0.

We have the following observations for the control algorithm in
(10)-(11):

• It is known that
∑

l∈L al,e
(aT

l y−Cl)
+

aT
l y

can be interpreted as the

packet loss rate observed at overlay linke [19]. The intuitive
explanation is as follows. The term (aT

l y −Cl)+ is the excess

traffic rate offered to physical linkl; thus
(aT

l y−Cl)
+

aT
l y

models the

fraction of traffic that is dropped atl. Assuming the packet
loss rates are additive (which is a reasonable assumption for
low packet loss rates), the total packet loss rates seen by the

overlay linke is given by
∑

l∈L al,e
(aT

l y−Cl)
+

aT
l y

.

• It is also known thatpl updating according to (11) can be in-
terpreted as queuing delay at physical linkl [20]. Intuitively,

if the incoming rateaT
l y > Cl at l, then it introduces an ad-

ditional queuing delay of
aT

l y−Cl

Cl
for l. If otherwise the term

aT
l y ≤ Cl , then the present queueing delay is reduced by an

amount of
Cl−aT

l y

Cl
unless hitting zero. The total queuing de-

lay observed by the overlay linke is then given by the sum
∑

l∈L al,epl .

• It turns out that the utility function, the subgradients, packet
loss rate and queuing delay are sufficient statistics to update
cm,e independently of the updates of other link rates. This
way, we can solve the problemMP-EQ without knowing the
physical network topology and physical link capacities.

The algorithm in (10)-(11) is similar to the standard primal-dual
algorithm, but sinceU(c) is not differentiable everywhere, we use
subgradient instead of gradient in updating the overlay link rates
c. If we fix the dual variablesp, then the algorithm in (10) cor-
responds to the standard subgradient method [21]. It maximizes a
non-differentiable function in a way similar to gradient methods for
differentiable functions — in each step, the variables are updated in
the direction of a subgradient. However, such a direction may not
be an ascent direction; instead, the subgradient method relies on
a different property. If the variable takes a sufficiently small step
along the direction of a subgradient, then the new point is closer to
the set of optimal solutions.

Establishing convergence of subgradient algorithms for saddle-
point optimization is in general challenging [17]. We explore con-
vergence properties for our primal-subgradient-dual algorithm in
the following theorem.

Theorem 3. Let (c∗, p∗) be a saddle point ofG (c, p), and Ḡ(k)

be the average function value obtained by the algorithm in (10)-
(11) after k iterations:

Ḡ(k)
,

1
k

k−1
∑

i=0

G
(

c(k), p(k)
)

.

Suppose
∣

∣

∣U
′

m(Rm(cm))
∣

∣

∣ ≤ Ū, ∀m= 1, . . . ,M, whereŪ is a constant,
then we have

−
B1

2αk
−
∆2

2
α ≤ Ḡ(k) − G (c∗, p∗) ≤

B2

2k
+
∆2

2
max
l∈L

C−1
l ,

where B1 =
∥

∥

∥c(0) − c∗
∥

∥

∥

2
and B2 =

[

p(0) − p∗
]T

diag(Cl , l ∈ L)
[

p(0) − p∗
]

are two positive distances depending on(c(0), p(0)), and∆ is a pos-
itive constant depending on̄U and(c(0), p(0)).

Proof: Refer to Appendix D.
Remarks: (i) The results bound the time-average Lagrange func-

tion value obtained by the algorithm to the optimal in terms of dis-
tances of the initial iterates (c(0), p(0)) to a saddle point. In particu-
lar, the averaged function values̄G(k) converge to the saddle point
valueG (c∗, p∗) within a gap of max

(

α,maxl∈LC−1
l

)

∆2

2 , at a rate of
1/k. (ii) The requirement of the utility function is easy to satisfied;
one example isUm(z) = log(z+ǫ) with ǫ > 0. (iii) Our results gener-
alize the one in [17] in the sense that the one in [17] only applies to
the case of uniform step size, while we allow differentpl to update
with different step size1

Cl
, which is critical forpl to be interpreted

as queuing delay and thus practically measurable. Our results also
have less stringent requirement on the utility function than the one
in [17]. (iv) Although the results may not warranty convergence
in the strict sense, our experiments over LAN testbed and on the
Internet in Section 6 show the algorithm quickly stabilizesaround
optimal operating points. Obtaining stronger convergenceresults

that confirm our practical observations are of great interests and is
left for future work.

4.3 Computing Subgradients ofRm(cm,D)

A key to implementing the Primal-Subgradient-Dual algorithm
is to obtain subgradients ofRm(cm,D). We first present some pre-
liminaries on subgradients, as well as concepts for computing sub-
gradients forRm(cm,D).

Definition 1. Given a convex function f , a vectorξ is said to
be a subgradient of f at x∈ dom f if

f (x′) ≥ f (x) + ξT(x′ − x), ∀x′ ∈ dom f ,

wheredom f = {x ∈ Rn|| f (x)| < ∞} represents the domain of the
function f .

For a concave functionf , − f is a convex function. A vectorξ is
said to be a subgradient off at x if −ξ is a subgradient of− f .

Next, we define the notion of acritical cut. For sessionm, let
its source besm and receiver set beVm ⊂ V − {sm}. A partition of
the vertex set,V = Z ∪ Z̄ with sm ∈ Z andt ∈ Z̄ for somet ∈ Vm,
determines ansm-t-cut. Define

δ(Z) ,
{

(i, j) ∈ E|i ∈ Z, j ∈ Z̄
}

be the set of overlay links originating from nodes in setZ and going
into nodes in set̄Z. Define the capacity of cut (Z, Z̄) as the sum
capacity of the links inδ(Z):

ρ(Z) ,
∑

e∈δ(Z)

cm,e.

Definition 2. For session m, a cut(Z, Z̄) is an sm-Vm critical cut
if it separates sm and any of its receivers andρ(Z) = Rm(cm,D).

1
h

1
t

2
t

s

� �

� �

� �

2
h

Figure 5: Critical cut example. Sources and its two receiverst1, t2
are connected over a directed graph. The number associated with a
link represents its link capacity.

We show an example to illustrate the concept of critical cut.
In Fig. 5, s is a source, andt1, t2 are its two receivers. The
minimum of the min-cuts among the receivers is 2. For the cut
({s,h1,h2, t1}, {t2}), itsδ({s,h1,h2, t1}) contains links (h1, t2) and (h2, t2),
each having capacity one. Thus the cut ({s,h1,h2, t1}, {t2}) has a ca-
pacity of 2 and it is ans− (t1, t2) critical cut.

With necessary preliminaries, we turn to compute subgradients
of Rm(cm,D). SinceRm(cm,D) is the minimum min-cut ofsm and
its receivers over the overlay graphDm, it is known that one of its
subgradients can be computed in the following way [15].

• Find ansm-Vm critical cut for sessionm, denote it as (Z, Z̄).
Note there can be multiplesm-Vm critical cuts in graphDm,
and it is sufficient to find any one of them.

• A subgradient ofRm(cm,D) with respect tocm,e is given by

∂Rm(cm,D)
∂cm,e

=















1, if e ∈ δ(Z);
0, otherwise.

(12)

In our system, these subgradients are computed by the sourceof
each session, after collecting the overlay-link rates fromeach re-
ceiver in the session. More implementation details are in Section 5.

5. PRACTICAL IMPLEMENTATION
Using the asynchronous networking paradigm supported by the

asynchronous I/O library (calledasio) in theBoost C++ library,
we have implemented a prototype ofCelerity, our proposed multi-
party conferencing system, with about 17, 000 lines of code in C++.

Celerityconsists of three main modules: link rate control mod-
ule, tree-packing and critical cut calculation module, andthe data
multicast engine. Fig. 6 describes the relationship between these
components and where they physically reside.

In the following, we describe the functionality implemented by
peers, some critical implementations, operation overheadand the
peer computation overhead.

���������	
��

����
�

�
��������

	
������	�

M
cc ,...,

1

�	
�������

��
����

���������	
��

�
����	�	�������
�

��������	�

���������	��
�

����	
��������

�
����

������

���
�����
�

�����������	
�����
������
�

����������	
�����
������
�

���������
����

����
��� ��

���	���	������

� ����	�	����
��

��	�	�������

���	����������

��
�����!��
��

	
������	�
�

���
��� ������

Figure 6: System architecture ofCelerity.

5.1 Peer Functionality
In our implementation, all peers perform the following functions:

• Peers in broadcast trees forward packets received from its
upstream parent to its downstream children. Sufficient infor-
mation about downstream children in the tree is embedded
in the packet header, for a packet to become “self-routing”
from the source to all leaf nodes in a tree.

• Every 200 ms, each peer calculates the loss rate and queuing
delay of its incoming links and adjusts the rates of its incom-
ing links based on the link rate control algorithm, and then
sends them to their corresponding upstream senders for the
new rates to take effect.

• Every 300 ms, each peer sends the link state (including allo-
cated rate and Round Trip Time) of all its outgoing links for
each session to the source of the session.

Upon receiving link states for all the links, the source of each ses-
sion uses the received link rates and the delay information to pack
a new set of delay-bounded trees, and starts transmitting session
packets along these trees. We set the delay bound to be 200 ms

when packing delay-bounded trees in our implementation. When
a source packs delay-bounded trees, it also calculates one critical
cut and the derivative of the utility for its session based onthe allo-
cated link rates and the delay information. In addition, thesource
embeds the information about the critical cut and the derivative of
the utility in the header of outgoing packets. When these packets
are received, a peer learns the derivative of the utility andwhether
a link belongs to the critical cut or not; it then adjusts the link rate
accordingly.

In the following, We use the example in Fig. 1 to further explain
how Celerityworks.

For an overlay linke ∈ E, sayB → C, The tail nodeC is re-
sponsible for controllingcA,e, the rate allocated to sessionA. To
do so,C works with the head nodeB to measure the packet loss
rate and queuing delay experienced by sessionA’s packets overe
(B→ C). This can be done byB attaching local sequence numbers
and timestamps to sessionA’s packets andC calculating the miss-
ing sequence numbers and the one-way-delay based on the times-
tamps [4].C also receives other needed control plane information
from the source of sessionA, such as the critical cut information
and the derivative of the utility, along with the data packets arrived
atC. With the loss rate and queuing delay for sessionA’s packets,
as well as these control plane information,C adjusts the allocated
ratecA,B→C using the algorithm in (10)-(11) and sends it toB for the
new rate to take effect.

Every 300ms, The head node of each overlay linke reports the
allocated ratescm,e and the overlay link round-trip-time information
to the source peers. Take the overlay linkB → C for example,B
reports the allocated ratecA,B→C and the round-trip-time informa-
tion of this link to sourceA. With the collected link state informa-
tion, source peerA packs delay-bounded trees using the algorithm
described in Section 3, calculates critical cuts using the method
explained in Section 4.3 and the derivative of the utility, and then
delivers data and the control-plane information to the peers along
the trees.

5.2 Critical Cut Calculation
The calculation of critical cuts, i.e., the subgradient ofRm(cm,D),

is the key to our implementation of the primal subgradient algo-
rithm. There can be multiple critical cuts in one session, but it is
sufficient to find any one of them. Since the source collects allo-
cated rates of all overlay links in its own session, it can calculate the
min-cut from the source to every receiver, and record the cutthat
achieves the min-cut. Then, the source compares the capacities of
these min-cuts, and the cut with the smallest capacity is a critical
cut.

5.3 Utility Function
With respect to the utility function in our prototype implemen-

tation, the PSNR (peak signal-to-noise ratio) metric is thede facto
standard criterion to provide objective quality evaluation in video
processing. We observed that the PSNR of a video stream codedat
a ratezcan be approximated by a logarithmic functionβ log(z+ δ),
in which a higherβ represents videos with a larger amount of mo-
tion. δ is a small positive constant to ensure the function has a
bounded derivative forz ≥ 0. Due to this observation, we use a
logarithmic utility function in our implementation.

5.4 Opportunistic Local Loss Recovery
Providing effective loss recovery in a delay-bounded reliable broad-

cast scenario, such as multi-party conferencing, is known to be
challenging [22]. It is hard for error control coding to workeffi-
ciently, since different receivers in a session may experience dif-

ferent loss rates and thus choosing proper error control coding pa-
rameters to avoid unnecessary waste of throughput is non-trivial. If
re-broadcasting the lost-packets is in use, it introduces additional
delay and may cause packets missing deadlines and become use-
less.

In our implementation, we use network coding [22] [23] to allow
flexible and opportunistic local loss recovery. For each overlay link
e, if the trees of a sessionm do not exhaustcm,e, the overlay-link
rate dedicated for the session, then we send coded packets (i.e., lin-
ear combination of received packets of corresponding session) over
such linke. As such, receiver of the overlay linke can recover the
packets that are lost on linke locally by using the network coded
packets. This way, Celerity provides certain flexible localloss re-
covery capability without incurring delay due to retransmission.

5.5 Fast Bootstrapping
Similar to TCP’s Slow Start strategy, we implement a method

in Celeritycalled “quick start” to quickly ramp up the rates of all
sessions during conference initialization stage. The purpose is to
quickly bootstrap the system to close-to-optimal operating points
when the conference just starts, during which period peers are join-
ing the conference and nothing significant is going on. We achieve
this by using larger values forβ in the utility functions and a large
step size in link rate adaptation during the first 30 seconds.After
the initialization stage, we resetβ and step sizes to proper values
and allow our system converge gradually and avoid unnecessary
performance fluctuation.

5.6 Operation Overhead
There are two types of overhead inCelerity: (1)packet overhead:

the size of the application-layer packet header is around 46bytes
per data packet, including critical cut information, the derivative of
the utility, packet sequence number, coding vector, timestamp and
so on. (2)link-rate control and link-state report overhead: every
200 ms, each peer adjusts the rates of its incoming links and sends
them to their corresponding upstream senders. In our implemen-
tation, such rate-control overhead is 0.2 kbps per link per session.
For the link state report overhead, each peer sends the link state of
all its outgoing links for each session to the source of the session
every 300 ms. In our implementation, for each peer, such link-state
report overhead is 0.158 kbps per link per session. In Section 6.3,
we report an overall operational overhead of 3.9% in our 4-party
Internet experiment.

5.7 Peer Computation Overhead
As described in Section 5.1, each peer inCeleritydelivers its own

packets, forwards packets from other sessions, calculatesthe loss
and queuing delay, updates the link rate of its incoming links, and
reports the link states. In the worst case, a peer delivers its pack-
ets and forwards packets from other sessions to other peers using
Simulcast. Thus for each peer the computation overhead of deliv-
ering and forwarding packets isO(R|V||E|) per second, whereR is
the maximum ofRm(cm,D) of all the sessions. For calculating the
loss and queuing delay, each peer calculates the loss and queuing
delay of its incoming links every 200 ms. Since the conferencing
participants are fully connected by the overlay links, the compu-
tation overhead of this action isO(|V|) per second per peer. Each
peer updates the allocated link rate for each session of its incoming
links and sends them to its upstreams every 200 ms. Since each
incoming link is shared by all sessions, for each incoming link the
peer should send|V| link rate updating packets to the correspond-
ing upstream. Thus the computation overhead of updating link rate
is O(|V||E|) per second per peer. Every 300 ms, each peer sends

the link states of all its outgoing links for each session to the corre-
sponding session source. Similarly, because each outgoinglink is
shared by all sessions and all the peers are fully connected,the com-
putation overhead of reporting the links states isO(|V||E|) per sec-
ond for each peer. In addition, each peer packs trees and calculates
critical cuts every 300 ms, according to Theorem 1, the computa-
tion complexity of these two actions areO(|V||E|2) and O(|V||E|)
respectively. Thus the computation overhead of packing trees and
calculating critical cuts isO(|V||E|2) per second per peer. By sum-
ming up all these computation overheads, the overall computation
overhead of each peer isO(|V||E|2 + R|V||E|) per second.

6. EXPERIMENTS
We evaluate our prototypeCeleritysystem over a LAN testbed

as well as over the Internet. The LAN experiments allow us to
(i) stress-testCelerity under various network conditions; (ii) see
whetherCelerity meets the design goal – delivering high delay-
bounded throughput and automatically adapting to dynamicsin the
network; (iii) demonstrate the fundamental performance gains over
existing solutions, thus justifying our theory-inspired design.

The Internet experiments allow us to further accessCelerity’s
superior performance over existing solutions in the real world.

6.1 LAN Testbed Experiments
We evaluateCelerity over a LAN testbed illustrated in Fig. 7,

where four PC nodes (A,B,C,D) are connected over a LAN dumb-
bell topology. The dumbbell topology represents a popular sce-
nario of multi-party conferencing between branch offices. It is also
a “tough” topology – existing approaches, such as Simulcastand
Mutualcast, fail to efficiently utilize the bottleneck bandwidth and
optimize system performance.

�

�

�

�

�

�

��� ����

��������

	���

���

	���

���

	���

���

	���

���

	���

���

	���

���

Figure 7: The “tough” dumbbell topology of the experimental
testbed. Two conference participating nodesA and B are in one
“office” and another twos nodesC andD are in a different “office”.
The two “offices” are connected by directed links between gate-
way nodesE andF, each link having a capacity of 480 kbps. Link
propagation delays are negligible.

In our experiments, all four nodes runCelerity. We run a four-
party conference for 1000 seconds and evaluate the system perfor-
mance. In order to evaluateCelerity’s performance in the pres-
ence of network dynamics, we reduce cross traffic and introduce
link failures during the experiment. In particular, we introduce an
80kpbs cross-traffic from nodeE to nodeF between the 300th sec-
ond and the 500th second, reducing the available bandwidth be-
tweenE andF from 480 kbps to 400 kbps. Further, starting from
the 700th second, we disconnect the physical link betweenA and
E; this corresponds to a practical situation where nodeA suddenly
cannot directly communicate with nodes outside the “office” due to
middleware or configuration errors at the gatewayE.

Figs. 8a-8d show the sending rate of each session (one session
originates from one node to all other three nodes). For compari-

son, we also show the maximum achievable rates by Simulcast and
Mutualcast, as well as the optimal sending rate of each session cal-
culated by solving the problem in (2)-(3) using a central solver.
Fig. 8e shows the utility obtained byCelerityand its comparison to
the optimal. Fig. 8f shows the average end-to-end delay and packet
loss rate of sessionA. Delay and loss performance of other sessions
are similar to those of sessionA.

In the following, we explain the results according to three differ-
ent experiment stages.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��������

�	�	
��
��

��	��
��

Figure 11: SessionA’s trees used byCelerity(upon convergence),
Mutualcast and Simulcast in the dumbbell topology, in the absence
of network dynamics.

6.1.1 Absence of Network Dynamics
We first look at the first 300 seconds when there is no cross traffic

or link failure. In this time period, the experimental settings are
symmetric for all participating peers; thus the optimal sending rate
for each session is 240 kbps.

As seen in Figs. 8a-8d,Celeritydemonstrates fast convergence:
the sending rate of each session quickly ramps up to 95% to the
optimal within 50 seconds. Fig. 8e shows thatCelerity quickly
achieves a close-to-optimal utility. These observations indicate any
other solution can at most outperformCelerityby a small margin.

As a comparison, we also plot the theoretical maximum rates
achievable by Simulcast and Mutualcast in Figs. 8a-8d. We ob-
serve that within 20 seconds, our system already outperforms the
maximum rates of Simulcast and Mutualcast.

Upon convergence,Celerity achieves sending rates that nearly
double the maximum rate achievable by Simulcast and Mutualcast.
This significant gain is due to thatCeleritycan utilize the bottleneck
resource more efficiently, as explained below.

In Fig. 11, we show the trees for sessionA that are used by
Celerity, Mutualcast and Simulcast in the dumbbell topology. As
seen, Simulcast and Mutualcast only explore 2-hop trees satisfy-
ing certain structure, limiting their capability of utilizing network
capacity efficiently. In particular, their trees consumes the bottle-
neck link resource twice, thus to deliver one-bit of information it
consumes two-bit of bottleneck link capacity. For instance, the tree
used by Simulcast has two branchesA → C andA → D passing
through the bottleneck links betweenE and F, consuming twice
the critical resource. Consequently, the maximum achievable rates
of Simulcast and Mutualcast are all 120 kbps. In contrast,Celerity
explores all 2-hop delay-bounded trees, and upon convergence uti-
lizes the trees that only consume bottleneck link bandwidthonce,
achieving rates that are close to the optimal of 240 kbps.

Fig. 8f shows the average end-to-end delay and packet loss rate
of sessionA. As seen, the packet loss rate and delay are high
initially, but decreases and stabilizes to small values afterwards.
The initial high loss rate is becauseCelerity increases the sending
rates aggressively during the conference initialization stage, in or-

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

time(s)

R
at

e(
kb

ps
)

Total tree rate achieved by Celerity
Theoretical optimal rate
Maximum achievable rate by Simulcast
Maximum achievable rate by Mutualcast

X−traffic departs

Link fails

X−traffic arrives

(a) Rate Performance of Node A

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

time(s)

R
at

e(
kb

ps
)

Total tree rate achieved by Celerity
Theoretical optimal rate
Maximum achievable rate by Simulcast
Maximum achievable rate by Mutualcast

X−traffic departs
Link fails

X−traffic arrives

(b) Rate Performance of Node B

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

time(s)

R
at

e(
kb

ps
)

Total tree rate achieved by Celerity
Theoretical optimal rate
Maximum achievable rate by Simulcast
Maximum achievable rate by Mutualcast

X−traffic departsX−traffic arrives
Link fails

(c) Rate Performance of Node C

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

time(s)

R
at

e(
kb

ps
)

Total tree rate achieved by Celerity
Theoretical optimal rate
Maximum achievable rate by Simulcast
Maximum achievable rate by Mutualcast

X−traffic departsX−traffic arrives
Link fails

(d) Rate Performance of Node D

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

time(s)

ut
ili

ty

utility value of session A
utility value of session B
utility value of session C
utility value of session D
total utility value
optimal total utility value

(e) Total utility of all sessions

0 100 200 300 400 500 600 700 800 900 1000
0

0.2
0.4
0.6
0.8

time(s)en
d−

to
−

en
d

de
la

y(
s)

average delay from node A to node B
average delay from node A to node C
average delay from node A to node D

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

time(s)en
d−

to
−

en
d

lo
ss

 r
at

e

average loss rate from node A to node B
average loss rate from node A to node C
average loss rate from node A to node D

(f) Average end-to-end delay and loss rate from
node A to other nodes

Figure 8: Performance ofCelerity in the LAN Testbed Experiments. (a)-(d): Sending rates and receiving rates of individual sessions. (e):
Utility value achieved compared to the optimum. (f): End-to-end delay and loss rate of sessionA.

0 100 200 300 400 500
0

200

400

600

800

1000

time(s)

R
at

e(
kb

ps
)

total tree sending rate of session A
total tree sending rate of session B
total tree sending rate of session C
total tree sending rate of session D
optimal sending rate of session A,B,D
optimal sending rate of session C

(a) Rate Performance of all Nodes

0 100 200 300 400 500
0

0.2
0.4
0.6
0.8

time(s)en
d−

to
−

en
d

de
la

y(
s)

average delay from node A to node B
average delay from node A to node C
average delay from node A to node D

0 100 200 300 400 500
0

0.1
0.2
0.3
0.4
0.5

time(s)en
d−

to
−

en
d

lo
ss

 r
at

e

average loss rate from node A to node B
average loss rate from node A to node C
average loss rate from node A to node D

(b) Average end-to-end delay and loss rate from
node A to other nodes

0 100 200 300 400 500
0

0.2
0.4
0.6
0.8

time(s)en
d−

to
−

en
d

de
la

y(
s)

average delay from node C to node A
average delay from node C to node B
average delay from node C to node D

0 100 200 300 400 500
0

0.1

0.2

0.3

time(s)en
d−

to
−

en
d

lo
ss

 r
at

e

average loss rate from node C to node A
average loss rate from node C to node B
average loss rate from node C to node D

(c) Average end-to-end delay and loss rate from
node C to other nodes

Figure 9: Performance ofCelerity in the Peer Dynamics Experiments. (a)-(f): Sending rates ofall sessions. (b)-(c): End-to-end delay and
loss rate of sessionA andC.

der to bootstrap the conference and explore network resource lim-
its. Celerity quickly learns and adapts to the network topology,
ending up with using cost-effective trees to deliver data. After the
initialization stage,Celerityadapts and converges gradually, avoid-
ing unnecessary performance fluctuation that deterioratesuser ex-
perience. By adapting to both delay and loss, we achieve low loss
rate upon convergence as compared to the case when only loss is
taken into account [24].

6.1.2 Cross Traffic
Between the 300th second and the 500th second, we introduce

an 80kpbs cross-traffic from nodeE to nodeF. Consequently, the
available bottleneck bandwidth betweenE and F decreases from
480 kbps to 400 kbps. We calculate the optimal sending rates dur-
ing this time period to be 200 kbps for sessionsA andB, and remain
240 kbps for sessionsC andD.

As seen in Figs. 8a-8d,Celerityquickly adapts to the bottleneck
bandwidth reduction.Celerity’s adaptation is expected from its de-
sign, which infers from loss and delay the available resource and
adapt accordingly. From Fig. 8f, we can see a spike in sessionA’s
packet loss rate around 300th second, at which time the available
bottleneck bandwidth reduces. The link rate control modules in
Celeritysenses this increased loss rate, adjusts, and reports the re-
duced (overlay) link rates to nodeA. Upon receiving the reports, the
tree-packing module inCelerityadjusts the source sending rate ac-
cordingly, adapting the system to a new close-to-optimal operating
point. At 500th second, the cross traffic is removed and the avail-
able bottleneck bandwidth betweenE andF restores to 480kbps.
Celerityalso quickly learns this change and adapts to operate at the
original point, evident in Figs. 8a-8b.

6.1.3 Link Failure

0 100 200 300 400 500 600 700
0

200

400

600

800

1000

time(s)

R
at

e(
kb

ps
)

Simulcast

Mutualcast

Celerity

(a) Sending Rate of Node A (Hong Kong)

0 100 200 300 400 500 600 700
0

200

400

600

800

1000

time(s)

R
at

e(
kb

ps
)

Celerity

Mutualcast

Simulcast

(b) Sending Rate of Node B (Hong Kong)

0 100 200 300 400 500 600 700
0

200

400

600

800

1000

time(s)

R
at

e(
kb

ps
)

Mutualcast

Celerity

Simulcast

(c) Sending Rate of Node C (Redmond)

0 100 200 300 400 500 600 700
0

200

400

600

800

1000

time(s)

R
at

e(
kb

ps
) Celerity

Mutualcast

Simulcast

(d) Sending Rate of Node D (Toronto)

0 100 200 300 400 500 600 700
0

500

1000

1500

2000

2500

3000

3500

time(s)

R
at

e(
kb

ps
)

Celerity

Mutualcast

Simulcast

(e) Total sending rate of all sessions

0 100 200 300 400 500 600 700
0

100

200

300

400

500

600

700

800

time(s)

U
til

ity

Celerity

MutualcastSimulcast

(f) Total utility of all sessions

0 100 200 300 400 500 600 700
0

0.2
0.4
0.6
0.8

time(s)en
d−

to
−

en
d

de
la

y(
s)

average delay from node A to node B
average delay from node A to node C
average delay from node A to node D

0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

time(s)en
d−

to
−

en
d

lo
ss

 r
at

e

average loss rate from node A to node B
average loss rate from node A to node C
average loss rate from node A to node D

(g) Average end-to-end delay and loss rate from
node A to other nodes

0 100 200 300 400 500 600 700
0

0.2
0.4
0.6
0.8

time(s)en
d−

to
−

en
d

de
la

y(
s)

average delay from node C to node A
average delay from node C to node B
average delay from node C to node D

0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

time(s)en
d−

to
−

en
d

lo
ss

 r
at

e

average loss rate from node C to node A
average loss rate from node C to node B
average loss rate from node C to node D

(h) Average end-to-end delay and loss rate from
node C to other nodes

0 100 200 300 400 500 600 700
0

0.2
0.4
0.6
0.8

time(s)en
d−

to
−

en
d

de
la

y(
s)

average delay from node D to node A
average delay from node D to node B
average delay from node D to node C

0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

time(s)en
d−

to
−

en
d

lo
ss

 r
at

e

average loss rate from node D to node A
average loss rate from node D to node B
average loss rate from node D to node C

(i) Average end-to-end delay and loss rate from
node D to other nodes

Figure 10: Performance of four-party conferences over the Internet, running prototype systems ofCelerity, Simulcast, and the scheme in [4].
(a)-(d): Throughput of individual sessions. (e): Total throughput of all sessions. (f): Utility achieved by different systems. (g)-(h): End-to-end
delay and loss rate of sessionA, C, andD for theCeleritysystem.

Between the 700th second and the 1000th second, we disconnect
the physical link betweenA andE. Consequently, nodeA cannot
use the 2-hop threes with nodeC (D) being intermediate nodes;
similarly nodeC (D) cannot use the 2-hop threes with nodeA be-
ing intermediate nodes. They can, however, still use the trees with
nodeB as intermediate nodes. We compute the theoretical optimal
sending rates during this time period to be 240 kbps for all sessions.

We observe from Fig. 8a that nodeA’s sending rate first drops
immediately upon link failure, then quickly adapts to the new oper-
ating point of around 120 kbps, only half of the theoretical optimal.
This is becauseCelerityonly explores 2-hop trees for content de-
livery while in this case 3-hop trees (e.g.,A → B→ C → D) are
needed to achieve the optimal. It is of great interest to explore
source rate control mechanisms beyond this 2-hop tree-packing
limitation to further improve the performance without incurring ex-
cessive overhead.

In Figs. 8d, we observe the sending rate of sessionD first drops
and then climbs back. This is because sessionD happensto use
the trees with nodeA being intermediate nodes right before the link
failure. The link failure breaks sessionD’s trees, thus sessionD’s

rate drops dramatically.Celeritydetects the significant change and
adapts to use the trees withB as intermediate nodes for session
D. SessionD’s rate thus gradually restore to around the optimal.
These observations show the excellent adaptability ofCelerity to
abrupt network condition changes.

As a comparison, we observe that Simulcast’s maximum achiev-
able rates of sessionA, C, and D all drop to zero upon the link
failure. This is because there is no direct overlay link betweenA
andC (D) after the link failure. Consequently, Simulcast is not
able to broadcast the source’s content to all the receivers in these
sessions, resulting in zero session rates.

6.2 Peer Dynamics Experiments
In order to evaluate theCelerity performance in peer dynam-

ics scenario, we conduct another experiment over the same LAN
testbed in Fig. 7. We first run a three-party conference amongnode
A, B, andC, at the 120th second, a nodeD joins the conferenc-
ing session and leaves at the 300th second, the entire conferencing
session lasts for 480 seconds.

Fig. 9a shows the sending rate of each session as well as the

optimal sending rate of each session, Fig. 9b-9c show the average
end-to-end delay and packet loss rate of sessionA andC. Delay
and loss performance of sessionB are similar to those of sessionA.

As seen in Fig. 9a, when nodeD joins the conferencing session
at the 120th second, the sending rates of sessionA, B andC first
drop immediately, then quickly adapt to close to the optimalvalue
again. This is because when nodeD joins, the initial allocated rates
for each session in the overlay links from other nodes to nodeD
are very low, when nodeA, B andC pack trees respectively ac-
cording to the allocated rates to deliver their data to the receivers
including nodeD, the achieved sending rates are low. Then,Celer-
ity detects the change of underlay topology, updates the allocated
rates and quickly converges to the new close to optimal operating
point. When nodeD leaves, we also observe thatCelerityquickly
adapts to the peer dynamic.

Celerity’s excellent performance adapting to peer dynamics is
expected from its design. We involve both loss and queuing delay
in our design, when peers join and leave, loss and queuing delay
reflect such events well, thus allowingCelerity to adapt rapidly to
the peer dynamics. For instance, in this experiment when node D
joins the conferencing session, we observe a spike in session A’s
end-to-end delay and packet loss rate in Fig. 9b.

In Fig. 9a another important observation is that as comparedto
the conference initialization stage, the convergence speed of node
C after nodeD leaves the conferencing session is slow. This is
because during the conference initialization stage,Celerity uses
a method called "quick start" described in Section 5.5 to quickly
ramp up the rates of all sessions, while after the initialization stage,
such method is not used in order to avoid unnecessary performance
fluctuation. It is of great interest to design source rate control mech-
anisms to achieve quick convergence in peer dynamics scenario
without incurring system fluctuation.

6.3 Internet Experiments
Beside the prototypeCelerity system, we also implement two

prototype systems of Simulcast and Mutualcast, respectively. Both
Celerityand Mutualcast use the same log utility functions in their
rate control modules. We evaluate the performance of these sys-
tems in a four-party conferencing scenario over the Internet.

We use four PC nodes that spread two continents and tree coun-
tries to form the conferencing scenario. Two of the PC nodes are
in Hong Kong, one is in Redmond, Washington, US, and the last
one is in Toronto, Canada. This setting represents a common global
multi-party conferencing scenario.

We run multiple 15-minute four-party conferences using thepro-
totype systems, in a one-by-one and interleaving manner. Weselect
one representative run for each system, and summarize theirperfor-
mance in Fig. 10.

Figs. 10a-10d show the rate performance of each session. (Re-
call that a session originates from one node to all other three nodes.)
As seen, all the session rates inCelerityquickly ramp up to near-
stable values within 50 seconds, and outperforms Simulcastwithin
10 seconds. Upon stabilization,Celerityachieves the best through-
put performance among the three systems and Simulcast is the
worst. For instance, all the session rates inCelerity is 2x of those
in Simulcast and Mutualcast, except in session C where Mutualcast
is able to achieve a higher rate thanCelerity.

We further observeCelerity’s superior performance in Fig. 10e,
which shows the aggregate session rates, and in Fig. 10f, which
shows the total achieved utilities. In both statistics,Celerity out-
performs the other two systems by a significant margin. Specifi-
cally, the aggregate session rate achieved byCelerity is 2.5x of that
achieved by Simulcast, and is 1.8x of that achieved by Mutualcast.

These results show that our theory-inspiredCeleritysolution can
allocate the available network resource to best optimize the system
performance. Mutualcast aims at similar objective but onlyworks
the best in scenarios where bandwidth bottlenecks reside only at
the edge of the network [4].

Figs. 10g-10i show the average end-to-end loss rate and delay
from source to receivers for sessionA, sessionC and sessionD.
The results for sessionB is very similar to sessionA and is not in-
cluded here. As seen, the average end-to-end delays of all sessions
are within 200 ms, which is our preset delay bound for effective
interactive conferencing experience. The average end-to-end loss
rate for all sessions are at most 1%-2% upon system stabilization.

The overall operation overhead ofCelerity in the 4-party Inter-
net experiment is around 3.9%. In particular, the packet overhead
accounts for 3.4%, and the link-rate control and link-statereport
overhead is around 0.5%.

7. CONCLUDING REMARKS
With the proliferation of front-facing cameras on mobile devices,

multi-party video conferencing will soon become an utilitythat
both businesses and consumers would find useful. WithCelerity,
we attempt to bridge the long-standing gap between the bit rate
of a video source and the highest possible delay-bounded broad-
casting rate that can be accommodated by the Internet wherethe
bandwidth bottlenecks can be anywhere in the network. This paper
reportsCeleritysolution as a first step in making this vision a real-
ity: by combining a polynomial-time tree packing algorithmon the
source and an adaptive rate control along each overlay link,we are
able to maximize the source rates without anya priori knowledge
of the underlying physical topology in the Internet.Celerity has
been implemented in a prototype system, and extensive experimen-
tal results in a “tough” dumbbell LAN testbed and on the Internet
demonstrateCelerity’s superior performance over the state-of-the-
art solution Simulcast and Mutualcast.

As future work, we plan to explore source rate control mecha-
nisms beyond the 2-hop tree-packing limitation inCelerity to fur-
ther improve its performance without incurring excessive overhead.

APPENDIX
A. Proof of Theorem 2

Proof: Firstly, we prove the minimum of the min-cuts separating
the source and receivers inDm can be expressed as

Rm(cm,D) = min
j

∑

v∈{ri }∪{hk}

min
{

cm,s→v, cm,v→t j

}

.
In the overlay graphDm, the minimum of the min-cuts is mint jǫT

MinCut
(

s, t j

)

. whereT is the set of receivers, andMinCut
(

s, t j

)

is the min-cut separating the sources and receivert j . The min-
cut separating the source and a receiver can be achieved by finding
the maximum unit-capacity disjoint paths from the source tothe
receiver. The structure of the graphDm is so special that for each
receivert j we can compute the maximum number of edge-disjoint
paths froms to t j easily.

In the graphDm we represent each edge with capacitym by m
parallel edges, each with unit capacity. For each receiver node, say
t j , due to the special structure of the graph, we can find these edge-
disjoint paths in a very simple way. Since there are only 2-hop
paths in the graphDm, so a path froms to t j must go through one
of the intermediate nodes. Thus for each intermediate node,saye ,

we can find min
{

cm,s→e, cm,e→t j

}

edge-disjoint paths froms to eand
then tot j . Therefore, we can have

MinCut
(

s, t j

)

=
∑

v∈{ri }∪{hk}

min
{

cm,s→v, cm,v→t j

}

Consequently, the minimum of the min-cuts separating the source
and receivers can be expressed as

Rm(cm,D) = min
j

∑

v∈{ri }∪{hk}

min
{

cm,s→v, cm,v→t j

}

.
Next, we prove the tree packing algorithm can achieve the mini-

mum of the min-cuts separating the source and receivers in the two
layer graphDm. This tree packing algorithm is developed based on
the Lovasz’s constructive proof [14] to Edmonds’ Theorem [25].
To proceed, we firstly apply the Lovasz’s constructive proofto our
two layer graphDm and based on the proof, we can directly have
the tree packing algorithm.

Notations: Let G be a digraph with a sourcea. We assume
all edges have unit-capacity and allowing multiple edges for each
ordered node pair.V(G) andE(G) denote its vertex set and edge set.
A branching (rooted ata) is a tree which is directed in such a way
that each receiverti has one edge coming in. Acutof G determined
by a setS ⊂ V(G) is the set of edges going fromS to V(G)−S and
will be denoted by△G (S), we also setδG(S) = | △G (S)|.

Theorem: In the two layer graphDm, if δG(S) ≥ k for every
S ⊂ V(G), a ∈ S, ∃ti ∈ V(G) − S then there arek edge-disjoint
branchings rooted ata.

Lovasz’s constructive proof:We use induction onk. It is obvious
that the theorem holds whenk = 0.

Let F be a set of edges satisfying the following coditions
(i) F is an arborescence rooted ata.
(Definition: In graph theory, an arborescence is a directed graph

in which, for a vertexu called the root and any other vertexv, there
is exactly one directed path fromu to v. Equivalently, an arbores-
cence is a directed, rooted tree in which all edges point awayfrom
the root. Every arborescence is a directed acyclic graph (DAG), but
not every DAG is an arborescence.)

(ii) δG−F (S) ≥ k− 1 for everyS ⊂ V(G), a ∈ S, ∃ti ∈ V(G) − S.
If F cover all receiversti , i.e., it is a branching then we are fin-

ished:G−F containsk−1 edge-disjoint branchings andF is in the
kth one.

If F only covers a setT ⊂ V(G),which do not cover all receivers,
i.e., there exist some receiversti < T. We show we can add an edge
e ∈△G (T) to F so that the arising arborescenceF + e still satisfies
(i) and (ii). Noting that ifr i ∈ T, then ti ∈ T, because there are
infinite unit-capacity edges fromr i to ti , adding a edge fromr i to ti
to F can still satisfies (i) and (ii).

Consider a maximal setA ⊂ V(G) such that
(a) a ∈ A;
(b) There is at least one receiverti < A∪ T;
(c) δG−F (A) = k− 1.
If no suchA exists any edge

e ∈ {(r i , t j)|r i ∈ T, t j ∈ V(G) − T}

∪{(hi , t j)|hi ∈ T, t j ∈ V(G) − T}

∪{(a, r j)}|t j < T} ∪ {(a, hi)|hi < T}

can be added toF.
Otherwise,
Since

δG−F (A∪ T) = δG(A∪ T) ≥ k,

we haveA∪ T , A, T * A. Also,

δG−F (A∪ T) > δG−F (A)

and so, there must be an edgee = (x, y) which belongs to△G−F

(A∪ T)− △G−F (A). Hencex ∈ T − A andy ∈ V(G) − T − A. We
claim e can be added toF, i.e.,F + e satisfies (i) and (ii).

Noting that due to the special structure ofDm,

e = (x, y) ∈ {(r i , t j)|r i ∈ T − A, t j ∈ V(G) − T − A}

∪{(hi , t j)|hi ∈ T − A, t j ∈ V(G) − T − A}

Soy must be a receiver.
It is obvious thatF + e still satisfies (i) .
Let S ⊂ V(G), a ∈ S, ∃ti ∈ V(G) − S. If e <△G−F (S) then

δG−F−e(S) = δG−F (S) ≥ k− 1.

If e ∈△G−F (S) thenx ∈ S, y ∈ V(G) − S. We use the inequality

δG−F (S ∪ A) + δG−F (S ∩ A) ≤ δG−F (S) + δG−F (A) (13)

which follows by an easy counting.
Sincea ∈ S∩ A, and there exist a receivery ∈ V(G)−S∩ A, we

have

δG−F (A) = k− 1, δG−F (S ∩ A) ≥ k− 1,

and by the maximality ofA,

δG−F (S ∪ A) ≥ k,

sinceS ∪ A , A asx ∈ S − A and there is at least one receiver
y < (S ∪ A) ∪ T asy < S ∪ A, y < T. Thus (13) implies

δG−F (S) ≥ k

and so,

δG−F−e(S) ≥ k− 1.

Thus, we can increaseF till finally it will satisfy (i), (ii) and
reach all receiversti . Then apply the induction hypothesis onG−F.
This completes the proof.

�

The obove proof yields an efficient algorithm to construct a max-
imum set of edge-disjoint trees reaching all receivers. Let

K(G) = min
S⊂V(G),a∈S,∃ti∈V(G)−S

δG(S)

These trees can be constructed edge by edge. At any stage, we
can increaseF by checking at mostE(G) edgese whether or not

K(G− F − e) ≥ k− 1.

Since determiningK(G) can be done inp steps, wherep is a
polynomial in V(G), E(G). Thus, we can obtaink edge-disjoint
trees in at mostO(pE(G)) steps.

Over the two layer graphDm, The algorithm packs unit-capacity
trees one by one. Each unit-capacity tree is constructed by greed-
ily constructing a tree edge by edge starting from the sourceand
augmenting towards all receivers. It is similar to the greedy treep-
acking algorithm based on Prim’s algorithm. The distinction lies in

the rule of selecting the edge among all potential edges. Theedge
whose removal leads to least reduction in the multicast capacity of
the residual graph is chosen in the greedy algorithm.

Because we alway choose the edge whose removal leads to least
reduction in the multicast capacity of the residual graph, the edge
we choose can alway satisfyK(G−F−e) ≥ k−1. Therefore, based
on the above proof, finally we can obtaink edge-disjoint trees.

Due to the special structure ofDm, the time complexity of com-
putingK(G) is O(V(G) ∗ E(G)). Therefore, the time complexity of
the algorithm isO(V(G) ∗ E2(G)).

�

Proof of the inequality (13).
Proof: supposee = (x, y) ∈△G−F (S ∪ A), thenx ∈ S ∪ A, and

y ∈ V(G) − S − A, thus we must have

e ∈△G−F (S)∪ △G−F (A).

Similarly, supposee = (x, y) ∈△G−F (S ∩ A), thenx ∈ S ∩ A, and
y ∈ V(G) − S ∩ A, we also have

e ∈△G−F (S)∪ △G−F (A).

if e= (x, y) ∈△G−F (S ∪ A)∩ △G−F (S ∩ A), thenx ∈ S ∩ A, and
y ∈ V(G) − S − A. Therefore we have

e ∈△G−F (S)∩ △G−F (A).

Base on the above observation, we can have

δG−F (S ∪ A) + δG−F (S ∩ A) ≤ δG−F (S) + δG−F (A)

�

B. Proof of Corollary 2

Proof: Let a length-|E| binary vectorIX be the indicator vector for
edge setX ⊆ E; its e-th entry is 1 ifeǫX, and 0 otherwise.

SinceRm(cm,D) is the minimum min-cut overDm. Therefore it
can be expressed as

Rm(cm,D) = min
iǫT

min
U: sǫU, ti ǫŪ

Iδ(U) cm

whereδ(U) denote the set of edges going fromU toŪ. SoRm(cm,D)
is the pointwise minimum of a family of linear functions. Letc1

m

andc2
m denote two different link rate vector, andλ1 + λ2 = 1, λ1 ≥

0, λ2 ≥ 0.
Then we have

Rm(λ1c1
m + λ2c2

m,D) = min
iǫT

min
U: sǫU, ti ǫŪ

Iδ(U)(λ1c1
m + λ2c2

m)

≥ min
iǫT

min
U: sǫU, ti ǫŪ

Iδ(U)(λ1c1
m)

+min
iǫT

min
U: sǫU, ti ǫŪ

Iδ(U)(λ2c2
m)

= Rm(λ1c1
m,D) + Rm(λ2c2

m,D)

= λ1Rm(c1
m,D) + λ2Rm(c2

m,D)

SoRm(cm,D) is a concave function of the overlay link ratescm.
�

C. Proof of Proposition 1

Proo f : For any eǫE andm = 1, ...M, let c(1)
m,e andc(2)

m,e denote two

differnet value. It is easy to verified that−
∑

l∈L

∫ aT
l c

0
(z−Cl)

+

z dz is

a concave function and−
∑

l∈L al,e
(aT

l y−Cl)
+

aT
l y

is its subgradient with

respect tocm,e. Therefore, we just need to showU′m (Rm) ∂Rm
∂cm,e

is a
subgradient ofUm (Rm) with respect tocm,e.

SinceUm (Rm) is a increasing and strictly concave function and
Rm(cm,D) is a concave function with respect tocm, which has been
proved in Corollary 1. Then we can have

Um

(

R(1)
m

)

− Um

(

R(2)
m

)

≤ U′m
(

R(2)
m

)

(R(1)
m − R(2)

m)

R(1)
m − R(2)

m ≤
∂R(2)

m

∂cm,e
(c(1)

m,e − c(2)
m,e)

SinceUm (Rm) is nondecreasing, we haveU′m
(

R(2)
m

)

≥ 0. Then

Um

(

R(1)
m

)

− Um

(

R(2)
m

)

≤ U′m
(

R(2)
m

)

(R(1)
m − R(2)

m)

≤ U′m
(

R(2)
m

) ∂R(2)
m

∂cm,e
(c(1)

m,e − c(2)
m,e)

Therefore,U′m (Rm) ∂Rm
∂cm,e

is a subgradient ofUm (Rm) with respect
to cm,e.

�

D. Proof of Theorem 3

Proof: Let g = max
lǫL

1
Cl

, A=diag(Cl , lǫL). let (c∗, p∗) be a sad-

dle point of the Lagrangian functionG (c, p). We useGc (c, p)and
Gp (c, p) to denote a subgradient ofG (c, p) with respect toc and a
subgradient ofG (c, p)with respect top. Suppose that|U′m(Rm(cm))|
∀mǫM is upper bounded by a positive constantŪ.

Under the assumption that|U′m(Rm(cm))| ∀mǫM is upper bounded
by a positive constant̄U, there is a constant△ > 0 , such that
||Gc

(

c(k), p(k)
)

||2 ≤ △, and||Gp

(

c(k), p(k)
)

||2 ≤ △ for all k ≥ 0.
In order to prove theorem 2, we need to prove the following two

lemmas.
Lemma 1: (a) For anyc ≥ 0 and allk ≥ 0,

||c(k+1) − c||22 ≤ ||c(k) − c||22 + 2α
[

G
(

c(k), p(k)
)

−G
(

c, p(k)
)]

+ α2||Gc

(

c(k), p(k)
)

||22

(b)For anyp ≥ 0 and allk ≥ 0,

(

p(k+1) − p
)T

A
(

p(k+1) − p
)

≤
(

p(k) − p
)T

A
(

p(k) − p
)

−2
[

G
(

c(k), p(k)
)

− G
(

c(k), p
)]

+g||Gp

(

c(k), p(k)
)

||22

Proof: (a) From the algorithm (9)-(10), we obtain that for any
c ≥ 0 and allk > 0,

||c(k+1) − c||22 ≤ ||c(k) + aGc

(

c(k), p(k)
)

− c||22

= ||c(k) − c||22 + 2αGc

(

c(k), p(k)
)T (

c(k) − c
)

+α2||Gc

(

c(k), p(k)
)

||22

Since the functionG (c, p) is concave inc for eachp ≥ 0, and
sinceGc

(

c(k), p(k)
)

is a subgradient ofG
(

c, p(k)
)

with respect toc at
c = c(k), we obtain for anyc,

Gc

(

c(k), p(k)
)T (

c(k) − c
)

≤ G
(

c(k), p(k)
)

− G
(

c, p(k)
)

Hence, for anyc ≥ 0 and allk ≥ 0,

||c(k+1) − c||22 ≤ ||c(k) − c||22 + 2α
[

G
(

c(k), p(k)
)

−G
(

c, p(k)
)]

+ α2||Gc

(

c(k), p(k)
)

||22

(b) Similarly, from (9)-(10), for anypl ≥ 0 lǫL, we have,

Cl |p
(k+1)
l − pl |

2 ≤ Cl |p
(k)
l − pl |

2 − 2
(

p(k) − pl

)

Gpl

(

c(k), p(k)
)

+
1
Cl
|Gpl

(

c(k), p(k)
)

|2

By adding these relations over alllǫL. we obtain for anyp ≥ 0
and allk ≥ 0.

(

p(k+1) − p
)T

A
(

p(k+1) − p
)

≤
(

p(k) − p
)T

A
(

p(k) − p
)

−2
(

p(k) − p
)T
Gp

(

c(k), p(k)
)

+g||Gp

(

c(k), p(k)
)

||22

SinceGp

(

c(k), p(k)
)

is a subgradient of the linear functionG
(

c(k), p
)

at p = p(k), we have for allp.

(

p(k) − p
)T
Gp

(

c(k), p(k)
)

= G
(

c(k), p(k)
)

− G
(

c(k), p
)

Therefore for anyp ≥ 0 and allk > 0.

(

p(k+1) − p
)T

A
(

p(k+1) − p
)

≤
(

p(k) − p
)T

A
(

p(k) − p
)

−2
[

G
(

c(k), p(k)
)

− G
(

c(k), p
)]

+g||Gp

(

c(k), p(k)
)

||22

�

Lemma 2: let ˆc(k) and ˆp(k) be the iterate averages given by

ĉ(k) =
1
k

k−1
∑

i=0

c(i), p̂(k) =
1
k

k−1
∑

i=0

p(i).

we then have for allk ≥ 1,

−1
2αk
||c(0) − c||22 −

α△2

2
≤

1
k

k−1
∑

i=0

G
(

c(i), p(i)
)

− G (c, p̂(k)) (14)

1
k

k−1
∑

i=0

G
(

c(i), p(i)
)

− G (ĉ(k), p) ≤
g△2

2
+

(

p(0) − p
)T

A
(

p(0) − p
)

2k
(15)

Proof: by using Corollary 1 and Lemma 1(a), we have for any
c ≥ 0 andi ≥ 0,

1
2α

[

||c(i+1) − c||22 − ||c
(i) − c||22

]

−
α

2
△2 ≤ G

(

c(i), p(i)
)

−G
(

c, p(i)
)

By adding these relations overi = 0, ..., k − 1, we obtain for any
c ≥ 0 andk ≥ 1,

−
1

2kα
||c(0) − c||22 −

α

2
△2

≤
1

2kα

[

||c(k) − c||22 − ||c
(0) − c||22

]

−
α

2
△2

≤
1
k

k−1
∑

i=0

[

G
(

c(i), p(i)
)

− G
(

c, p(i)
)]

Since the functionG (c, p) is linear inp for any fixedc ≥ 0, there
holds

G (c, p̂(k)) =
1
k

k−1
∑

i=0

G
(

c, p(i)
)

Combining the preceding two relations, we obtain for anyc ≥ 0
andk ≥ 1,

−
1

2kα
||c(0) − c||22 −

α

2
△2 ≤

1
k

k−1
∑

i=0

G
(

c(i), p(i)
)

− G (c, p̂(k))

thus establishing relation (14).
Similarly, by using Corollary 1 and Lemma 1(b),we have for any

p ≥ 0 andi ≥ 0,

(

p(i+1) − p
)T

A
(

p(i+1) − p
)

≤
(

p(i) − p
)T

A
(

p(i) − p
)

−2
[

G
(

c(i), p(i)
)

−G
(

c(i), p
)]

+ g△2

By adding these relations overi = 0, ..., k− 1, we obtain for any
p ≥ 0 andk ≥ 1,

1
k

k−1
∑

i=0

[

G
(

c(i), p(i)
)

− G
(

c(i), p
)]

−
g△2

2

≤

(

p(0) − p
)T

A
(

p(0) − p
)

2k
−

(

p(k) − p
)T

A
(

p(k) − p
)

2k

≤

(

p(0) − p
)T

A
(

p(0) − p
)

2k

because the functionG (c, p) is concave inc for any fixedp ≥ 0,
we have

1
k

k−1
∑

i=0

G
(

c(i), p
)

≤ G (ĉ(k), p)

Combining the preceding two relations, we obtain for anyp ≥ 0
andk ≥ 1,

1
k

k−1
∑

i=0

G
(

c(i), p(i)
)

− G (ĉ(k), p) ≤
g△2

2
+

(

p(0) − p
)T

A
(

p(0) − p
)

2k

�

Our proof of this theorem is based on Lemma 2. In particular, by
letting c = c∗ and p = p∗ in equations (14) and (15), repectively,
we obtain,

−1
2αk
||c(0) − c∗ ||22 −

α△2

2
≤

1
k

k−1
∑

i=0

G
(

c(i), p(i)
)

− G (c∗, p̂(k))

1
k

k−1
∑

i=0

G
(

c(i), p(i)
)

− G (ĉ(k), p∗) ≤
g△2

2
+

(

p(0) − p∗
)T

A
(

p(0) − p∗
)

2k

By the saddle-point relation, we have

G (ĉ(k), p∗) ≤ G (c∗, p∗) ≤ G (c∗, p̂(k))

Combining the preceding three relations, we obtain for allk ≥ 1,

−1
2αk
||c(0) − c∗ ||22 −

α△2

2
≤

k−1
∑

i=0

G
(

c(i), p(i)
)

− G (c∗, p∗)

≤
g△2

2
+

(

p(0) − p∗
)T

A
(

p(0) − p∗
)

2k

�

Algorithm 1 Link Rate Control
/*
Every 200ms each peer measures the loss rate and queuing delay of
its incoming links and gets the source sending rate from the packets
of corresponding session source it has received and adjuststhe rates
of these links based on the link rate control algorithm, and then
sends them to their corresponding upstream senders for the new
rates to take effect.
S denotes the set of all sessions.sm denotes the session of peerm.
Em denotes the set of incoming links of peerm. Im,e is the critical
link indicator of link e for sessionsm. If e is a critical link, then
Im,e = 1, otherwise,Im,e = 0.
* /
1: for all eǫEm do

/*get the loss rate of the linke * /
2: lossrate←GetAverageLoss();

/*get the queuing delay of the linke * /
3: queuing−delay←GetAverageQueuingDelay();
4: for all sǫS do
5: if s, sm then

/* get the source sending rate of sessions * /
6: sending−rate←GetSourceSendingRate();

/* get the critical cut indicator of linke
for sessions * /

7: Im,e←GetCriticalCut(e ,m);
8: delta←step−size(β/sending−rate

-lossrate-queuing−delay);
9: list.push_back(pair<s, delta>);
10: end if
11: end for

/* send the updated rate to the upstream of the link */

12: Update(e, list);
13:end for

8. REFERENCES
[1] Skype, “http://www.skype.com/intl/en-us/home.”
[2] Cisco,

“http://newsroom.cisco.com/dlls/2010/prod_111510c.html.”
[3] J. Li, P. A. Chou, and C. Zhang, “Mutualcast: an efficient

mechanism for content distribution in a P2P network,” in
Proc. ACM SIGCOMM Asia Workshop, Beijing, 2005.

Algorithm 2 Data Multicast
/*
Every 300ms each source peer packs trees using the link states it
collects and calculates the critical cut information, and then append
the critical cut information and source sending rate in the header of
the packets that it will send out through these trees.
S denotes the set of all sessions.sm denotes the session of peerm.
Link−S tatesm is the collected links states for sessionsm.
* /
/* source peermpacks delay-limited trees. */
1: Trees←PackTree(Link−S tatesm)
/* calculate the critical cut information for sessionsm

2: Im←CalculateCriticalCut(Link−S tatesm);
/* deliver packet */
3: while (CanSendPacket())do

/* get a tree with the maximum rate among the trees */

4: tree←GetATree(Trees);
5: datapacket←CreatePacket();
6: sending−rate← 0;
7: for all tǫTreesdo
8: sending−rate← sending−rate+ t.rate;
9: end for

/* add the critical cut information and source_sending_rate
to the header of the packet */

10: Append(datapacket, Im, sending−rate);
11: Deliver(datapacket, tree);
12:end while

[4] M. Chen, M. Ponec, S. Sengupta, J. Li, and P. A. Chou,
“Utility maximization in peer-to-peer systems,” in
Proc. ACM SIGMETRICS, Annapolis, MD, 2008.

[5] İ. E. Akkuş, Ö. Özkasap, and M. Civanlar, “Peer-to-peer
multipoint video conferencing with layered video,”Journal
of Network and Computer Applications, vol. 34, no. 1, pp.
137–150, 2011.

[6] M. Ponec, S. Sengupta, M. Chen, J. Li, and P. Chou,
“Multi-rate peer-to-peer video conferencing: A distributed
approach using scalable coding,” inIEEE International
Conference on Multimedia and Expo, New York, 2009.

[7] ——, “Optimizing Multi-rate Peer-to-Peer Video
Conferencing Applications,”IEEE Trans. on Multimedia,
2011.

[8] C. Liang, M. Zhao, and Y. Liu, “Optimal Resource
Allocation in Multi-Source Multi-Swarm P2P Video
Conferencing Swarms,”accepted for publication in
IEEE/ACM Trans. on Networking, 2011.

[9] A. Akella, S. Seshan, and A. Shaikh, “An empirical
evaluation of wide-area internet bottlenecks,” inProc. of the
3rd Internet Measurement Conference, 2003.

[10] N. Hu, L. E. Li, Z. M. Mao, P. Steenkiste, and J. Wang,
“Locating internet bottlenecks: Algorithms, measurements,
and implications,” inProc. of ACM SIGCOMM, 2004.

[11] V. Vazirani,Approximation algorithms. Springer Verlag,
2001.

[12] J. Mo and J. Walrand, “Fair end-to-end window-based
congestion control,”IEEE/ACM Trans. Netw., no. 5, pp. 556
– 567, Oct. 2001.

[13] L. Guo and I. Matta, “QDMR: An efficient QoS dependent
multicast routing algorithm,” inProc. IEEE Real-Time
Technology and Applications Symposium, Canada, 1999.

[14] L. Lovasz, “On two minimax theorems in graph theory,”

Journal of Combinatorial Theory, Series B, vol. 21, no. 2, pp.
96–103, 1976.

[15] Y. Wu, M. Chiang, and S. Kung, “Distributed utility
maximization for network coding based multicasting: A
critical cut approach,” inProc. IEEE NetCod 2006, 2006.

[16] K. Arrow, L. Hurwicz, H. Uzawa, and H. Chenery,Studies in
linear and non-linear programming. Stanford university
press, 1958.

[17] A. Nedić and A. Ozdaglar, “Subgradient methods for
saddle-point problems,”Journal of optimization theory and
applications, vol. 142, no. 1, pp. 205–228, 2009.

[18] R. Bruck, “On the weak convergence of an ergodic iteration
for the solution of variational inequalities for monotone
operators in Hilbert space,”Journal of Mathematical
Analysis and Applications, vol. 61, no. 1, pp. 159–164, 1977.

[19] F. Kelly, “Fairness and stability of end-to-end congestion
control,” European Journal of Control, vol. 9, no. 2-3, pp.
159–176, 2003.

[20] S. H. Low, L. Peterson, and L. Wang, “Understanding vegas:
A duality model,”Journal of ACM, vol. 49, no. 2, pp.
207–235, Mar. 2002.

[21] D. P. Bertsekas,Nonlinear programming. Athena Scientific
Belmont, MA, 1999.

[22] J. Park, M. Gerla, D. Lun, Y. Yi, and M. Medard, “Codecast:
a network-coding-based ad hoc multicast protocol,”Wireless
Communications, IEEE, vol. 13, no. 5, pp. 76–81, 2006.

[23] R. Ahlswede, N. Cai, S. Li, and R. Yeung, “Network
information flow,” IEEE Trans. on Information Theory,
vol. 46, no. 4, pp. 1204–1216, 2000.

[24] X. Chen, M. Chen, B. Li, Y. Zhao, Y. Wu, and J. Li,
“Celerity: Towards low-delay multi-party conferencing over
arbitrary network topologies,” inACM NOSSDAV, 2011.

[25] J.Edmonds, “Edge-disjoint branchings,”Combinatorial
Algorithms, ed.R.Rustin, pp. 91–96, 1973.

	1 Introduction
	1.1 Contribution
	1.2 Paper Organization

	2 Problem Formulation and Celerity Overview
	2.1 Settings
	2.2 Problem Formulation
	2.3 Celerity Overview

	3 Packing Delay-bounded Trees
	3.1 Pack Delay-bounded Trees With Helpers Existing

	4 Overlay Link Rate Control
	4.1 Considering Both Delay and Loss
	4.2 A Loss-Delay Based Primal-Subgradient-Dual Algorithm
	4.3 Computing Subgradients of Rm(bold0mu mumu ccccccm,D)

	5 PRACTICAL IMPLEMENTATION
	5.1 Peer Functionality
	5.2 Critical Cut Calculation
	5.3 Utility Function
	5.4 Opportunistic Local Loss Recovery
	5.5 Fast Bootstrapping
	5.6 Operation Overhead
	5.7 Peer Computation Overhead

	6 Experiments
	6.1 LAN Testbed Experiments
	6.1.1 Absence of Network Dynamics
	6.1.2 Cross Traffic
	6.1.3 Link Failure

	6.2 Peer Dynamics Experiments
	6.3 Internet Experiments

	7 Concluding Remarks
	8 References

