1107.1138v4 [cs.MM] 30 Oct 2012

arXiv

Celerity: A Low-Delay Multi-Party Conferencing Solution

Xiangwen Chen
Dept. of Information

Minghua Chen

Dept. of Information

Baochun Li
Dept. of Electrical and

Engineering Engineering Computer Engineering
The Chinese University of The Chinese University of University of Toronto
Hong Kong Hong Kong
Yao Zhao Yunnan Wu Jin Li
Alcatel-Lucent Facebook Inc. Microsoft Research at
Redmond

ABSTRACT

In this paper, we attempt to revisit the problem of multitparon-
ferencing from a practical perspective, and to rethink thsigh

space involved in this problem. We believe that an emphasis o

low end-to-end delays between any two parties in the confere

is a must, and the source sending rate in a session should ada

to bandwidth availability and congestion. We pres€sterity, a
multi-party conferencing solution specifically designecathieve
our objectives. It is entirely Peer-to-Peer (P2P), and abk slim-
inating the cost of maintaining centrally administeredvees. It
is designed to deliver video with low end-to-end delays, uatlity
levels commensurate with available network resources axlgr

trary network topologies whetaottlenecks can be anywhere in the
network This is in contrast to commonly assumed P2P scenarios
where bandwidth bottlenecks reside only at the edge of tie ne

work. The highlight in our design is a distributed and adaptate
control protocol, that can discover and adapt to arbitrapolo-
gies and network conditions quickly, converging tticent link
rate allocations allowed by the underlying network. In adeace
with adaptive link rate control, source video encodingsate also
dynamically controlled to optimize video quality in arlaity and
unpredictable network conditions. We have implemer@eterity
in a prototype system, and demonstrate its superior pegiocm
over existing solutions in a local experimental testbed @ret the
Internet.

1. INTRODUCTION

With the availability of front-facing cameras in high-enahart-

phone devices (such as the Samsung Galaxy S and the iPhone 4)(,’

notebook computers, and HDTMswlti-partyvideo conferencing,
which involves more than two participants in a live confeiag
session, has attracted a significant amount of interest fhenin-
dustry. Skype, for example, has recently launched a moipihig
service supporting multi-party video conferencing in &gkt ver-

sion (Skype 5)[[1]. Skype video conferencing has also been re

cently supported in a range of new Skype-enabled tele\dsgurch
as the Panasonic VIERA series, so that full-screen highmidief
video conferencing can be enjoyed in one’s living room. Noes,
Google has supported multi-party video conferencing iraitsst
social network servic&oogler. And Facebook cooperating with
Skype plans to provide video conferencing service to itsobié
of users. We argue that these new conferencing solutiores thav

potential to provide an immersive human-to-human comnasnic

tion experience among remote participants. Such an argumasn

p

been corroborated by many industry leaders: Cisco pretfiets
video conferencing and tele-presencédticawill increase ten-fold
between 2008-2013][2].

While traffic flows in a live multi-party conferencing session are
fundamentally represented by a multi-way communicati@tess,
today’s design of multi-party video conferencing systemesemngi-
neered in practice by composing communication primitivesg.(
transport protocols) over uni-directional feed-forwainks$, with
primitive feedback mechanisms such as various forms of@ekn
edgments in TCP variants or custom UDP-based protocols. We
believe that a high-quality protocol design must harnesduit po-
tential of the multi-way communication paradigm, and musirg
antee the stringent requirements of low end-to-end delaiyis the
highest possible source coding rates that can be suppoytdg-b
namic network conditions over the Internet.

From the industry perspective, known designs of comméycial
available multi-party conferencing solutions are eitlaggély server-
based, e.g., Microsoft f@ce Communicator, or are separated into
multiple point-to-point sessions (this approach is caBadulcast),
e.g., Apple iChat. Server-based solutions are susceptidentral
resource bottlenecks, and as such scalability becomesraaoia
cern when multiple conferences are to be supported comtlyre
In the Simulcast approach, each user splits its uplink baattiw
equally among all receivers and streams to each receivaragety.
Though simple to implement, Simulcastfars from poor quality
of service. Specifically, peers with low upload capacity fareed
to use a low video rate that degrades the overall experiehiteo
other peers.

In the academic literature, there are recently severalestuzh
eer-to-peer (P2P) video conferencing from a utility maxation
perspective[[338]. Among them, It al. [3] and Chenet al. [4]
may be the most related ones to this work (we call their unified
approach Mutualcast). They have tried to support contestiiloi-
tion and multi-party video conferencing in multicast sessj by
maximizing aggregate application-specific utility and titdiza-
tion of node uplink bandwidth in P2P networks. Specific debth
and depth-2 tree topologies have been constructed usiegaak-
ing, and rate control was performed in each of the tree-based
to-many sessions.However, they only considered the lihste-
nario where bandwidth bottlenecks reside at the edge of ¢he n
work, while in practice bandwidth bottlenecks can easibide in
the core of the network [9,10]. Further, all existing indiztand
academic solutions, including Mutualcast, did not exgiicton-
sider bounded delay in designs, and can lead to unsatisfex@d
tive conferencing experience.

http://arxiv.org/abs/1107.1138v4

1.1 Contribution Notation | Definition
In this paper, we reconsider the design space in multi-pargo L Setof all physical links
conferencing solutions, and pres€dlerity, a new multi-party con- v Set of cpnference partlglpatlng nodes
ferencing solution specifically designed to maintain low-¢orend E Set of <_j|rected °Ver"'?‘y I|n_ks
delays while maximizing source coding rates in a sessi@terity Ci Capacity of the physmal link C
has the following salient features: Ae Whether overlay linle passes physma} link
Cme Rate allocated to sessiomon overlay linke
e It operates in a pure P2P manner, and as such eliminating the ¢, Overlay link rates of streamm, ¢, = [Cme, € € E]
cost of maintaining centrally administered servers. c Overlay link rates of all streams,= [c],...,c},]"
H M
e |tcan deliver video at quality levels commensurate withlava)E/) E’)otlal ol;/erlaé/ link trafics, y = Jlm- Cm
able network resources ovarbitrary network topologies clay OL,m o
while maintainingoounded end-to-end delays R (Cm. D) Se.ssmnns.rate W'.th'n f[he QeI?y boun@ .
a2 Price function of violating link’s capacity constraint
o It can automatically adapt to unpredictable network dynam- pi Lagrange multiplier of link’s capacity constraint
ics, such as cross fi&c and abrupt link failures, allowing Gg(c,p Lagrange function of variablesand p
smooth conferencing experience. Note: we use bold symbols to denote vectors.
Enabling the above features for multi-party conferencmghal- Table 1: Key notations.

lenging. First, it requires a non-trivial formulation tretows sys-

tematic solution design over arbitrary network capacitysteaints.

In contrast, existing P2P system design works with perfoacea 2. PROBLEM FORMULATION AND CELER-
guarantee commonly assume bandwidth bottlenecks resithe at

edge of the network. Second, maximizing session rates cuioje ITY OVERVIEW)))
bounded delay is known to be NP-Complete and hard to solve ap- One way to design a multi-party conferencing system is te for

proximately [11]. We take a practical approach in this papat ex- mulate its fundamental design problem, explore powerfedtati-
plores all 2-hop delay-bounded overlay trees with polyradicdm- cal techniques to solve the problem, and use the obtaineghtss
plexity. Third, detecting and reacting to network dynamviéthout to guide practical system designs. In this way, we can alsdeze

a priori knowledge of the network conditions are non-trivial. We @about potential and limitation of the designs, allowingyessstem
use both delay and loss as congestion measures and adapsthe s tuning and further systematic improvements. Téble 1 listskey

sion rates with respect to both of them, allowing early diecand notations used in this paper.
fast response to unpredictable network dynamics. ;

The highlight in our design is a distributed rate controltpro 2.1 Settlngs)
col, that can discover and adapt to arbitrary topologiesnetaiork Consider a network modeled as a directed grapk (N, £),
conditions quickly, converging tofiecient link rate allocations al- ~ WhereA is the set of all physical nodes, including conference par-
lowed by the underlying network. In accordance with adapliivk ticipating nodes and other intermediate nodes such asreouted
rate control, source video encoding rates are also dynégnazn- Lis the set of all physical links. Each linke £ has a nonnegative
trolled to optimize video quality in arbitrary and unpretdicle un- capacityC, and a nonnegative propagation detiy
derlay network conditions. Consider a multi-party conferencing system o@eiVe useV C

The design ofCelerity is largely inspired by our new formula- ~ /V to denote the set of all conference participating nodes.ryEve
tion that specifically takes into account arbitrary netwoalpacity node inV is a source and at the same time a receiver for every other

constraints and allows us to explore design space beyorsgéiho ~ nodes. Thus there are totaly = |V| sessions of (audivideo)
existing solutions. Our formulation is overlay link basettiznas ~ Streams. Eachstreamis generated ata source node sayneeds
a number of variables linear in the number of overlay linkkisT {0 be delivered to all the rest nodes\ir-{v}, by using overlay links

is a significant reduction as compared to the number of viasab ~ Petween any two nodes W.

exponential in the number of overlay links in an alternatiese- An overlay link (u,v) meansu can send data te by setting up
based formulation. We believe our approach is applicablher a TCRUDP connection, along an underlay path frono v pre-
P2P system problems, to allow solution design beyond theream assgned by routing protocols. LEthe the set of all directed over-
assumption in P2P scenarios that the bandwidth bottlemeskde lay links. For alle € E andl € £, we define
only at the edge of the network.

We have implemented a prototy@elerity system using €+. e = {1’ i overlgy link e passes physical link (8]
By extensive experiments in a local experimental testbetican 0. otherwise.
the Internet, we demonst_rate th_e superior performandeetdrity The physical link capacity constraints are then expressed a
over state-of-the-art solutions Simulcast and Mutualcast

M

1.2 Paper Organization Y=Y ae) Cme<C, VieL

The rest of this paper is organized as follows. In Sedfion&, w <E m=l
introduce a general formulation for the multi-party coefecing wherecy, denotes the rate allocated to sessioan overlay linke
problem; existing solutions can be considered as algositbaiv- anday describes the total overlay ffi@ passing through physical
ing its special cases. We present and discuss the designms ofit- link I.
ical components o€elerity, the tree packing module and the link Remark: In our model, the capacity bottleneck can be anywhere
rate control module, in Sectioh$ 3 dad 4, respectively. Vésqmt in the network, not necessarily at the edges. This is in eshto
the practical implementation &elerityin Sectior[b and the exper- a common assumption made in previous P2P works that the up-
imental results in Sectidd 6. Finally, we conclude in Sedifo We links/downlinks of participating nodes are the only capacitylbett

leave all the proofs and pseudo codes in the Appendix. neck.

2.2 Problem Formulation

In a multi-party conferencing system, each session sounzelb
casts its stream to all receivers over a complete overlaghgoa
which every linkehas a rate,. and a delay’,. , & 0. For smooth
conferencing experience, the total delay of deliveringakpafrom
the source to any receiver, traversing one or multiple aydihks,
cannot exceed a delay boubd

A fundamental design problem is to maximize the overall con-
ferencing experience, by properly allocating the overiak tates
to the streams subject to physical link capacity constsaiie for-
mulate the problem as a network utility maximization probie

M

MP: maXso). Um(Ru(Cr, D)) @
m=1

st a'y<C, Vlel 3)

The optimization variables areand the constraints if}(3) are the
physical link capacity constraints.

Rn(cm, D) denotes sessiom's rate that we obtain by using re-
sourcec, within the delay bound Pand is a concave function of
Cm as we will show in Corollarf]1 in the next section.

The objective is to maximize the aggregate system utllity(Rn)
is an increasing and strictly concave function that mapstieam
rate to an application-specific utility. For example, a coonig
used video quality measure Peak Signal-to-Noise Ratio @SN
can be modeled by using a logarithmic function as the utjfly
[. with these settings and observatiods,(Ry) is concave irc and
the problemMP is a concave optimization problem.

Remarks: (i) The formulation ofMP is an overlay link based
formulation in which the number of variables per sessig&jisind
thus at mos{V[2. One can write an equivalent tree-based formula-
tion for MP but the number of variables per session willégo-
nentialin |E| and|V/|. (ii) Existing solutions, such as Simulcast and
Mutualcast, can be thought as algorithms solving specedsaf
the problemMP. For example, Simulcast can be thought as solving
the problemMP by using only the 1-hop tree to broadcast content
within a session. Mutualcast can be thought as solving aia@pec
case of the problenviP (with the uplinks of participating nodes
being the only capacity bottleneck) by packing certain kdelpand
depth-2 trees within a session.

2.3 Celerity Overview

Celerity builds upon two main modules to maximize the sys-
tem utility: (1) adelay-bounded video delivenyodule to distribute
video at high rate given overlay link rates (i.e., how to coepand
achieveRy(cm, D)); (2) alink rate controlmodule to determiner,.

Video delivery under known link constraints: This problem is
similar to the classic multicast problem, and packing spangor
Steiner) trees at the multicast source is a popular solutitow-
ever, the unique “delay-bounded” requirement in multitpaon-
ferencing makes the problem more challenging. We introduce
delay-bounded tree packing algorithm to tackle this prob(de-
tailed in Sectiof3).

Link rate control : In principle, one can first infer the network
constraints and then solve the probléfi® centrally. However,
directly inferring the constraints potentially requiresokving the
entire network topology and is highly challenging. Gelerity, we
resort to design adaptive and iterative algorithms for isghthe
problemMP in a distributed manner, withouat priori knowledge
of the network conditions (detailed in Sect[dn 4).

tUsing logarithmic functions also guarantees (weightedppr-
tional fairness among sessions and thus no session willestr
the optimal solution[12].

Figure 1: An illustrating example of 4-party\(B, C, andD) con-
ferencing over a dumbbell underlay topologi and F are two
routers. Solid lines represent underlay physical links. nfake
the graph easy to read, we use one solid line to represent afpai
directed physical links. Dash lines represent overlaysink

We high-levelly explain howCelerityworks in a 4-party confer-
encing example in Fid.] 1. We focus on sessigrin which source
A distributes its stream to receiveBsC, andD, by packing delay-
bounded trees over a complete overlay graph shown in theefigur
We focus on sourcé and one overlay linki, C), which represents
a UDP connection over an underlay pdho E to F to C. Other
overlay links and other sessions are similar.

We first describe the control plane operations. For the ayerl
link (B, C), the head nod® works with the tail nodeC to peri-
odically adjust the session ratg g_.c according toCeleritys link
rate control algorithm. Such adjustment utilizes conplalre in-
formation that sourcé piggybacks with data packets, and loss and
delay statistics experienced by packets traveling fidto C. We
show such local adjustments at every overlay link resultaobajly
optimal session rates.

The head nod® also periodically reports to sourcé\ the ses-
sion ratecapg,c and the end-to-end delay froBito C. Based on
these reports from all overlay links, souréeperiodically packs
delay-bounded trees usirgeleritys tree-packing algorithm, cal-
culates necessary control-plane information, and delidata and
the control-plane information along the trees.

The data plane operations are sim@elerityuses delay-bounded
trees to distribute data in a session. Nodes on every treafdr
packets from its upstream parent to its downstream childicn
lowing the “next-children” tree-routing information endued in
the packet heade€eleritys tree-packing algorithm guarantees that
(i) packets arrive at all receivers within the delay bount] @i) the
total rate of a sessiom passing through an overlay lirkdoes not
exceed the allocated ratge.

In the following two sections, we first present the designthef
two main modules irCelerity. We then describe how they are im-
plemented in physical peers in Sectidn 5.

3. PACKING DELAY-BOUNDED TREES

Given the link rate vectoc,, and delay for every overlay link&
(i.e..X e, &d), achieving the maximum broadcamulticast stream
rate under a delay bourid is a challenging problem. A general
way to explore the broadcastulticast rate under delay bounds is to
pack delay-bounded Steiner trees. However, such probléiPis
hard [13]. Moreover, the number of delay-bounded Steiregstto
consider is in general exponential in the network size.

In this paper, we pack 2-hop delay-bounded trees in an gverla
graph of sessiom, denoted byD,,, to achieve a good stream rate
under a delay bound. Note by graph theory notations, a 2+te@p t
has a depth at most 2. Packing 2-hop trees is easy to implement
It also explores all overlay links between source and receand

Figure 2: lllustration of the directed acyclic sub-grapleiowhich
we pack delay-bounded 2-hop trees.

between receivers, thus trying to utilize resourently. In fact,
it is shown in [3[4] that packing 2-hop multicast treesfises to
achieve the maximum multicast rate for certain P2P topekgdiVe
elaborate our tree-packing scheme in the following.

We first define the overlay grapbn,. Graph®Dy, is a directed
acyclic graph with two layers; one example of such graphus-il
trated in Fig[2. In this example, consider a session withuacs
s, three receivers,2, 3. For each receiver we draw two nodes,
ri andt;, in the graphDy,; ti models the receiving functionality of
nodei andr; models the relaying functionality of nodle

Suppose that the prescribed link bit rates are given by tbmre
Cm, With the capacity for linke beingcmne. Then inDy, the link
from sto r; has capacitgms.r,, the link fromr; to tj (with i # j)
has capacitgmy, -, and the link fronr; to t; has infinite capacity.
If the propagation delay of an edgexceeds the delay bound, we
do not include it in the graph. If the propagation delay of a-fvop
paths — r; — t; exceeds the delay bound, we omit the edge from
ri tot; from the graph. As aresult, every path fraito any receiver
t; in the graph has a path propagation delay within the delandhou

Over such 2-layer sub-graph,,, we pack 2-hop trees connect-
ing the source and every receiver using the greedy algonittumn
posed in[[14]. Below we simply describe the algorithm andenor
details can be found in[14].

Assuming all edges have unit-capacity and allowing mutipl
edges for each ordered node pair. The algorithm packs apasity
trees one by one. Each unit-capacity tree is constructeddsdg
ily constructing a tree edge by edge starting from the soarmk
augmenting towards all receivers. It is similar to the gyetrde-
packing algorithm based on Prim’s algorithm. The distimetiies
in the rule of selecting the edge among all potential edgks.€tige
whose removal leads to least reduction in the multicastagpaf
the residual graph is chosen in the greedy algorithm.

We show a simple example to illustrate how the tree packing al
gorithm works. Fig[B shows the process of packing a unigciyp
tree over a 2-layer sub-graph. In this examglis,source andh, t,,
t3 are three receivers, each edge freto r; (i = 1, 2,3) and from
ri totj (i # j) has unit capacity. Theo associated with the edge
betweerr; andt; means the edge has infinite capacity.

The tree packing algorithm maintains a “connected set’ptlh
by 7, that contains all the nodes that can be reached &doring
the tree construction process. Initialff, = {s} contains only the

their removals give the same reduction. Our algorithm ramiglo
picks one such equally-good edge, in this case say edger;.
The algorithm adds nodg into 7~ and amends it to b& = {s,r;}.

In Step 2, the algorithm evaluates the edges originated &ayn
node in7". In this case it picks edge — t; and amendg™ to be
{s,r1,t1}. The algorithm repeats the process until all the receivers
are in7, which is Step 4 in this example. The algorithm then
successfully constructs a unit-capacity tee> r; — {t, to, t3}.
Afterwards, the algorithm resefs = {s} and constructs next tree
in the residual graph until no unit-capacity tree can beherrcon-
structed.

The above greedy algorithms is very simple to implement end i
practical implementation details are further discussesctior[s.

Utilizing the special structure of the graghy,, we obtain perfor-
mance guarantee of the algorithm as follows.

Theorem 1. The tree-packing algorithm i [14] achieves the
minimum of the min-cuts separating the source and receivers
D and is expressed as

Ren(Crn. D) = mjinZ Min {Cmsor, Gt - @)

Furthermore, the algorithm has a running time of\@|EJ?).

Proof: Refer to Appendix A.

Hence, our tree-packing algorithm achieves the maximumyedel
bounded multicast rate over the 2-layer sub-gréjgh The achieved
rateRy(cm, D) is a concave function af;, as summarized below.

Corollary 1. The delay-bounded multicast ratg,{®m, D) ob-
tained by our tree-packing algorithm is a concave functiénhe
overlay link ratescy,.

Proof: Refer to Appendix B.

3.1 Pack Delay-bounded Trees With Helpers
Existing

In the previous discussion, we do not involve helpers(aédrelp
node is neither a source nor a receiver in the conferencisg®g
but it is willing to help in distributing content) in our trgeacking
algorithm. Actually, this tree packing algorithm can alshiave
the minimum of the min-cuts separating the source and reczin
D, even though there exist helpers.

To see how the tree packing algorithm can be appliedfp
which includes helpers, we firstly define the 2-layer sutpiy@,
with helpers existing; one example of such graph is illusttan
Fig.[4. In this example, consider a session with a sosytaree
receivers 12,3, and a hepeh,. Similarly, for each receivei, we
draw two nodest; andt;, in the graphDy,; t; models the receiving
functionality of nodei andr; models the relaying functionality of
nodei.

Suppose that the prescribed link bit rates are given by the ve
tor ¢y, with the capacity for linke being cme. Then inDy,, the
link from sto r; has capacitycmsr;, the link fromr; to t; (with
i #]) has capacitymy, -, and the link fromr; to t; has infinite
capacity. Similarly, the link fronms to he(a helper) has capacity
Cms-h, and the link fromhy to t; has capacitgmn, ;. If the prop-
agation delay of an edge exceeds the delay bound, we do not

sources. In each step, the algorithm adds and connects one moreinclude it in the graph. If the propagation delay of a two-lpaph

node to the tree and appends the node jntdrhe algorithm finds
atree wherv™ contains all the receivers.

s — v (ve{r}u{hJ) — t; exceeds the delay bound, we omit the
edge fromv to t; from the graph. As a result, every path frato

Seen from Fig.[B, in Step 1, the algorithm evaluates the links any receivet; in the graph has a path propagation delay within the

starting from source and greedily picks the edge whose ramov
gives the smallest reduction of the multicast capacity @rdsidual
graph. In this example, any edge leavingan be chosen because

delay bound.
Over such 2-layer sub-grapgh,,, we use the same greedy tree
packing algorithm to pack 2-hop trees connecting the soanck

S S
r
Residual N s Nl M _h
—_
Graph 0 5] g 0 [
[P P L oLt t
S S
[] /

. . e re er r r,e er r
Unit-capacity ! 2 s_ 1 ¢ 2 s_ ot
tree

[N B | E B =
L, ot ot ot ot
Step 0 Step 1

S S S
r rs r r Iy fLer fs
—_— e m—
© 00 (<] 00 00
(PR i, [, I t, t, 1
S S S
r,e er, e re er rn€r,e eor;
B —_—t
[[] []]
t, t, L 1 ty Lt t,
Step 2 Step 3 Step 4

Figure 3: Example of packing a unit-capacity tree, starfiogn s and reaching all receivets, t, andts, using our greedy tree packing

algorithm.

ahelper

Figure 4: lllustration of the 2-layer sub-graby,, with a helper
existing

every receiver, and it can still achieve the minimum of tha-alits
separating the source and receiverg®f , which is discribed as
follows.

Theorem 2. The tree-packing algorithm il [14] achieves the
minimum of the min-cuts separating the source and receivers
D with helpers existing and is expressed as

Rn(Cm, D) = min min{cm%v, cmHj}.

ve{rijuthg)

©)

Furthermore, the algorithm has a running time of\@|E[?).

Proof: Refer to Appendix A.
Similarly, the achieved ratBy(cqy, D) is a concave function of
Cm as summarized below.

Corollary 2. In the 2-layer sub-graptD,, with helpers exist-
ing, the delay-bounded multicast rate,(®m, D) obtained by our
tree-packing algorithm is a concave function of the oveliak
ratescp.

Proof: Refer to Appendix B.

4. OVERLAY LINK RATE CONTROL
4.1 Considering Both Delay and Loss

We revise original formulation to design our link rate catr
algorithm with both queuing delay and loss rate taken intmant.

Adapting link rates to both delay and loss allows early datac
and fast response to network dynamics.

Consider the following formulation with a penalty term adde
into the objective function of the probleMP:

M a{ry
WP -EQ:max U2 Y Un(Re(cnD)-Y, [a@dde
= m=1 leL
s.t. ay<C, Vlel, (7)

.
where [” q(2) dzis the penalty associated with violating the ca-
pacity constraint of physical link € £, and we choose the price
function to be

+
a@ 2 & 20 ®
where @)* = maxa, 0}. If all the constraints are satisfied, then the
second term in[{6) vanishes; if instead some constraintyiare
lated, then we charge some penalty for doing so.

Remark: (i) The problemMP-EQ is equivalent to the original
problemMP. Because any feasible soluti@nof these two prob-
lems must satisfye] y < C;, and consequently the penalty term
in the problemMP-EQ vanishes. Therefore, any optimal solu-
tion of the original problemMP must be an optimal solution of

the problemMP-EQ and vice versa. (ii) It can be verified that

~Yier foa'qu|(z)dz is a concave function im; hence, 2(c) is a
linear combination of concave functions and is concave. él@r
becaus&qy(cm, D) is the minimum min-cut of the overlay gragh,

with link rates beingey, 2(c) is not a diferentiable functior [15].

We apply Lagrange dual approach to design distributed algo-
rithms for the problenMP-EQ. The advantage of adopting dis-
tributed rate control algorithms in our system is that ibat robust
adaption upon unpredictable network dynamics.

The Lagrange function of the problem is given by:

> [a@dz-

leL

M
Gep) Un(Ru(cn D) -
m=1

Z P (&TY—Q),

leL

9)

wherep, > 0 is the Lagrange multiplier associated with the capac-
ity constraint in[(¥) of physical link. p, can be interpreted as the

price of using linkl. Since the problenVIP-EQ is a concave opti-
mization problem with linear constraints, strong dualigtds and
there is no duality gap. Any optimal solution of the problenda
one of its corresponding Lagrangian multiplier is a saddliepof
G (c, p) and vice versa. Thus to solve the probIMR-EQ, it suf-
fices to design algorithms to pursue saddle points @, p).

4.2 A Loss-Delay Based Primal-Subgradient-
Dual Algorithm

There are two issues to address in designing algorithmsufier p
suing saddle points of (c, p). First, the utility function?{(c)
(and consequentlg (c, p)) is not everywhere dierentiable. Sec-
ond, U(c) (and consequentlg (c, p)) is not strictly concave ire,
thus distributed algorithms may not converge to the deseettile
points under multi-party conferencing settings [4].

To address the first concern, we use subgradient in algorithm
design. To address the second concern, we provide a coneerge
result for our designed algorithm.

To proceed, we first compute subgradientd4c). The propo-
sition below presents a useful observation.

Proposition 1. A subgradient ofZ{(c) with respect to g, for
any ee Eand m=1,... M is given by

ORm (@y-C)*
U (Rn) -) ae—=——
Cme 2 © gy
where28n is a subgradient of R(cy, D) with respect to ge.
dCme &

Proof: Refer to Appendix C.

Motivated by the pioneering work of Arrow, Hurwicz, and Uzaw
[16] and the followup works [17][18], we propose to use the fo
lowing primal-subgradient-duahlgorithm to pursue the saddle point
of G(c, p):VeeE, m=1, ..M, VleL,

Primal-Subgradient-Dual Link Rate Control Algorithm:

, IRy
che” Ce + o | Upn (RY) e
.
(aqu(k) -C) ()
Qe——=———) AeP (10)
k k 1 +
p|(1) _ pl() | a [a1Ty(k) _ C']pfk) 11

wherea > 0 represents a constant the step size for all the iterations,
and function
a<o;

b, a> 0.

We have the following observations for the control algaritin

(10)-(13):
(aly-a)*

e It is known that}., ae o, can be interpreted as the

packet loss rate observed at overlay l&[d9]. The intuitive

explanation is as follows. The term{(y — C|)* is the excess
@'y-g)*
2

(] = {max(Q b).

traffic rate dfered to physical link; thus models the

fraction of trdfic that is dropped dt Assuming the packet
loss rates are additive (which is a reasonable assumption fo
low packet loss rates), the total packet loss rates seeneby th

Tv_C)+
overlay linkeis given byy,., a2 ;Tj') :

It is also known thap, updating according t¢{11) can be in-
terpreted as queuing delay at physical lifR0]. Intuitively,

if the incoming rateay > C, atl, then it introduces an ad-

ditional queuing delay o?‘Té—;C' for I. If otherwise the term
a'y < Cy, then the present queueing delay is reduced by an

_al
amount ofc'?‘?‘y unless hitting zero. The total queuing de-
lay observed by the overlay linkis then given by the sum

Dier Aeh-

It turns out that the utility function, the subgradientsclget
loss rate and queuing delay ardiitient statistics to update
Cme independently of the updates of other link rates. This
way, we can solve the problemP-EQ without knowing the
physical network topology and physical link capacities.

The algorithm in [(ZD)E(TI1) is similar to the standard prirdakl
algorithm, but since&{(c) is not diferentiable everywhere, we use
subgradient instead of gradient in updating the overlaly tates
c. If we fix the dual variables, then the algorithm in[{10) cor-
responds to the standard subgradient method [21]. It magsra
non-diferentiable function in a way similar to gradient methods for
differentiable functions — in each step, the variables are eddat
the direction of a subgradient. However, such a directiog nat
be an ascent direction; instead, the subgradient methazs reth

a different property. If the variable takes affstiently small step
along the direction of a subgradient, then the new pointdseri to
the set of optimal solutions.

Establishing convergence of subgradient algorithms fddkea
point optimization is in general challengifig [17]. We exgl@on-
vergence properties for our primal-subgradient-dual rédgm in
the following theorem.

Theorem 3. Let(c’, p*) be a saddle point of (c, p), and G¥
be the average function value obtained by the algorithni G){1
(@7) after k iterations:

02 1N o(w o
G¥ e > 6(c).
i=0

SupposgU;,(Rn(Cm))| < U, ¥Ym=1,..., M, whereU is a constant,
then we have

B:

2ak

2
B A

A2 _
- (K _
¥< G %2

> maxC; 2,

leL

G(c.p)

where B = ||c@ - c¢’|[*and B = [P - p*]T diag(Ci.| € £)[p? - p']
are two positive distances depending(af?, p©), andA is a pos-
itive constant depending dn and (¢©, p©).

Proof: Refer to Appendix D.

Remarks: (i) The results bound the time-average Lagrange func-
tion value obtained by the algorithm to the optimal in terrhdie-
tances of the initial iterates@, p©) to a saddle point. In particu-
lar, the averaged function valugg9 converge to the saddle point
valueg (c*, p) within a gap of maxa, max., C(l) A—ZZ, at a rate of
1/k. (ii) The requirement of the utility function is easy to séied;
one example i8)m(2) = log(z+e€) with e > 0. (iii) Our results gener-
alize the one in[17] in the sense that the onéin [17] only iasfib
the case of uniform step size, while we allovifdientp, to update
with different step sizeCLI, which is critical forp, to be interpreted
as queuing delay and thus practically measurable. Ourtsesigb
have less stringent requirement on the utility functiomttize one
in [I7]. (iv) Although the results may not warranty converge
in the strict sense, our experiments over LAN testbed anchen t
Internet in Sectiofilé show the algorithm quickly stabilizesund
optimal operating points. Obtaining stronger convergemecelts

that confirm our practical observations are of great interasd is
left for future work.

4.3 Computing Subgradients ofR,(cy, D)

A key to implementing the Primal-Subgradient-Dual aldurit
is to obtain subgradients &,(cy, D). We first present some pre-
liminaries on subgradients, as well as concepts for comgusib-
gradients folRy(cny, D).

Definition 1. Given a convex function f, a vectéris said to
be a subgradient of f at & domf if

f(X) = F(x) + £ (X - X), VX € domf,

wheredomf = {x e R"|f(X)| < oo} represents the domain of the
function f.

For a concave functiofi, —f is a convex function. A vectaf is
said to be a subgradient 6fat x if —¢ is a subgradient of f.

Next, we define the notion of eritical cut. For sessiomm, let
its source bes;,, and receiver set b€, c V — {sy}. A partition of
the vertex sety = ZuU Z with s, € Z andt € Z for somet € V,,,
determines as,-t-cut. Define

6(Z)é{(i,j)e Eliczj eZ_}

be the set of overlay links originating from nodes inAeind going
into nodes in seZ. Define the capacity of cuZ(Z) as the sum
capacity of the links i5(Z):

pR)E Y Cne

ec6(2)

Definition 2. For session m, a cyZ, Z_) is an $,-Vp, critical cut
if it separates g and any of its receivers ang(Z) = Ry(Cnm, D).

Figure 5: Critical cut example. Soursand its two receivers, t,
are connected over a directed graph. The number associdted w
link represents its link capacity.

We show an example to illustrate the concept of critical cut.
In Fig. [8, sis a source, and,, t, are its two receivers. The
minimum of the min-cuts among the receivers is 2. For the cut
({s, hy, o, t1}, {t2}), its6({s, hy, hy, t1}) contains links iy, to) and (i, t2),
each having capacity one. Thus the dstlf;, hy, t1}, {t2}) has a ca-
pacity of 2 and it is ars — (13, t,) critical cut.

With necessary preliminaries, we turn to compute subgrdaslie
of Ry(Cm, D). SinceRy(cm, D) is the minimum min-cut o, and
its receivers over the overlay grafby, it is known that one of its
subgradients can be computed in the following way [15].

e Find ans,-V,, critical cut for sessiomn, denote it asZ,Z_).
Note there can be multipls,-Vy, critical cuts in graphDy,
and it is stfficient to find any one of them.

e A subgradient oRy(cm, D) with respect tane is given by

ORn(Cn. D) |1, if ecd(2); (12)
dcme |0, otherwise.
In our system, these subgradients are computed by the sofirce
each session, after collecting the overlay-link rates femmnh re-
ceiver in the session. More implementation details are otiGa[3.

5. PRACTICAL IMPLEMENTATION

Using the asynchronous networking paradigm supported &y th
asynchronous/O library (calledasio) in theBoost C++ library,
we have implemented a prototype ©élerity, our proposed multi-
party conferencing system, with about 00 lines of code in €+.

Celerity consists of three main modules: link rate control mod-
ule, tree-packing and critical cut calculation module, #meldata
multicast engine. Figl16 describes the relationship betvibese
components and where they physically reside.

In the following, we describe the functionality implemetey
peers, some critical implementations, operation overtegatithe
peer computation overhead.

Delay-bounded
trees, the
derivative of
the utility and
critical cuts

: Source peer’s functionality

Data Multicast

Tree Packing
and critical cuts
calculation
3

U

Deliver data, Overlay link

control-plane ratesCy,...,Cy,

information and delay

alongthe trees information
e 1
. . 1
! Queuing delay Tink Rate |
. and loss rate 1

Control

1 measurement :
:_ Every peer’s functionality |

Figure 6: System architecture GElerity.

5.1 Peer Functionality
In our implementation, all peers perform the following ftinos:

e Peers in broadcast trees forward packets received from its
upstream parent to its downstream childrentfiSient infor-
mation about downstream children in the tree is embedded
in the packet header, for a packet to become “self-routing”
from the source to all leaf nodes in a tree.

e Every 200 ms, each peer calculates the loss rate and queuing
delay of its incoming links and adjusts the rates of its ineom
ing links based on the link rate control algorithm, and then
sends them to their corresponding upstream senders for the
new rates to takefect.

e Every 300 ms, each peer sends the link state (including allo-
cated rate and Round Trip Time) of all its outgoing links for
each session to the source of the session.

Upon receiving link states for all the links, the source afteaes-
sion uses the received link rates and the delay informatigratk
a new set of delay-bounded trees, and starts transmittisgjcse
packets along these trees. We set the delay bound to be 200 ms

when packing delay-bounded trees in our implementationeiWh
a source packs delay-bounded trees, it also calculatesritivalc
cut and the derivative of the utility for its session basedhanallo-
cated link rates and the delay information. In addition, gbarce
embeds the information about the critical cut and the devivaf
the utility in the header of outgoing packets. When thesédegtac
are received, a peer learns the derivative of the utility\ahdther
a link belongs to the critical cut or not; it then adjusts tim frate
accordingly.

In the following, We use the example in FId. 1 to further ekpla
how Celerityworks.

For an overlay linke € E, sayB — C, The tail nodeC is re-
sponsible for controllingae, the rate allocated to sessidn To
do so,C works with the head nodB to measure the packet loss
rate and queuing delay experienced by sessisrpackets ovee
(B — C). This can be done bR attaching local sequence numbers
and timestamps to sessié's packets and calculating the miss-
ing sequence numbers and the one-way-delay based on the time
tamps [4].C also receives other needed control plane information
from the source of sessiofy, such as the critical cut information
and the derivative of the utility, along with the data paslatrived
atC. With the loss rate and queuing delay for ses#mpackets,
as well as these control plane informati@adjusts the allocated
rateca g_.c using the algorithm if{J0)=(11) and sends i&6or the
new rate to takeféect.

Every 300ms, The head node of each overlay érkeports the
allocated ratesn and the overlay link round-trip-time information
to the source peers. Take the overlay IBk- C for example,B
reports the allocated ratg g_,c and the round-trip-time informa-
tion of this link to sourceA. With the collected link state informa-
tion, source peeA packs delay-bounded trees using the algorithm
described in Sectiop] 3, calculates critical cuts using tkethod
explained in Sectioh 413 and the derivative of the utilitydahen
delivers data and the control-plane information to the pedong
the trees.

5.2 Critical Cut Calculation

The calculation of critical cuts, i.e., the subgradienRgfcn, D),
is the key to our implementation of the primal subgradiegbal
rithm. There can be multiple critical cuts in one session,ibis
suficient to find any one of them. Since the source collects allo-
cated rates of all overlay links in its own session, it cacaiale the
min-cut from the source to every receiver, and record thelait
achieves the min-cut. Then, the source compares the cigaait
these min-cuts, and the cut with the smallest capacity istiaar
cut.

5.3 Utility Function

With respect to the utility function in our prototype implem
tation, the PSNR (peak signal-to-noise ratio) metric isdtedacto
standard criterion to provide objective quality evaluatio video
processing. We observed that the PSNR of a video stream @tded
a ratez can be approximated by a logarithmic funct@log(z + 6),
in which a highes represents videos with a larger amount of mo-
tion. ¢ is a small positive constant to ensure the function has a
bounded derivative for > 0. Due to this observation, we use a
logarithmic utility function in our implementation.

5.4 Opportunistic Local Loss Recovery

ferent loss rates and thus choosing proper error controhgquh-
rameters to avoid unnecessary waste of throughput is moaktif
re-broadcasting the lost-packets is in use, it introduckektianal
delay and may cause packets missing deadlines and become use
less.

In our implementation, we use network codihg![22]/[23] taell
flexible and opportunistic local loss recovery. For eachrlaydink
e, if the trees of a sessiam do not exhaustne, the overlay-link
rate dedicated for the session, then we send coded packetéir(i
ear combination of received packets of corresponding @essver
such linke. As such, receiver of the overlay lirkkcan recover the
packets that are lost on lir&locally by using the network coded
packets. This way, Celerity provides certain flexible Idoak re-
covery capability without incurring delay due to retranssion.

5.5 Fast Bootstrapping

Similar to TCP’s Slow Start strategy, we implement a method
in Celerity called “quick start” to quickly ramp up the rates of all
sessions during conference initialization stage. The gaeps to
quickly bootstrap the system to close-to-optimal opegapnints
when the conference just starts, during which period peerpa-
ing the conference and nothing significant is going on. Weeaeh
this by using larger values f@rin the utility functions and a large
step size in link rate adaptation during the first 30 secordter
the initialization stage, we resgtand step sizes to proper values
and allow our system converge gradually and avoid unnegessa
performance fluctuation.

5.6 Operation Overhead

There are two types of overheadGelerity: (1) packet overhead
the size of the application-layer packet header is arountydés
per data packet, including critical cut information, theidative of
the utility, packet sequence number, coding vector, tiamaptand
so on. (2)link-rate control and link-state report overheaévery
200 ms, each peer adjusts the rates of its incoming links andss
them to their corresponding upstream senders. In our ingem
tation, such rate-control overhead i &bps per link per session.
For the link state report overhead, each peer sends thetéiek of
all its outgoing links for each session to the source of tlesisa
every 300 ms. In our implementation, for each peer, suchdinke
report overhead is.058 kbps per link per session. In Section] 6.3,
we report an overall operational overhead d% in our 4-party
Internet experiment.

5.7 Peer Computation Overhead

As described in Sectidn 3.1, each peeCileritydelivers its own
packets, forwards packets from other sessions, calcula¢el®ss
and queuing delay, updates the link rate of its incomingdljrdad
reports the link states. In the worst case, a peer delivensaitk-
ets and forwards packets from other sessions to other peerg u
Simulcast. Thus for each peer the computation overheadliof de
ering and forwarding packets @(R|V/||E|) per second, wherB is
the maximum ofRy(cy, D) of all the sessions. For calculating the
loss and queuing delay, each peer calculates the loss anthque
delay of its incoming links every 200 ms. Since the confeirgnc
participants are fully connected by the overlay links, tbenpu-
tation overhead of this action B(|V|) per second per peer. Each
peer updates the allocated link rate for each session eidgtsning
links and sends them to its upstreams every 200 ms. Since each

Providing dfective loss recovery in a delay-bounded reliable broadincoming link is shared by all sessions, for each incoming the

cast scenario, such as multi-party conferencing, is knawbet
challenging [[22]. It is hard for error control coding to woeki-
ciently, since diferent receivers in a session may experience dif-

peer should senf¥/| link rate updating packets to the correspond-
ing upstream. Thus the computation overhead of updatifg éte
is O(|V||E|) per second per peer. Every 300 ms, each peer sends

the link states of all its outgoing links for each sessiorhtodorre-
sponding session source. Similarly, because each outdjalgs
shared by all sessions and all the peers are fully connetiedpm-
putation overhead of reporting the links state®({p/||E|) per sec-
ond for each peer. In addition, each peer packs trees andatals
critical cuts every 300 ms, according to Theorem 1, the cdazpu
tion complexity of these two actions a@(|V||E|?) and O(|V||E|)
respectively. Thus the computation overhead of packinestesd
calculating critical cuts i©(|V||E|?) per second per peer. By sum-
ming up all these computation overheads, the overall coatiput
overhead of each peer®(|V||E]* + R|V||E|) per second.

6. EXPERIMENTS

We evaluate our prototyp€elerity system over a LAN testbed
as well as over the Internet. The LAN experiments allow us to
(i) stress-tesCelerity under various network conditions; (ii) see
whetherCelerity meets the design goal — delivering high delay-
bounded throughput and automatically adapting to dynamitise
network; (iii) demonstrate the fundamental performandagjaver
existing solutions, thus justifying our theory-inspiregstgyn.

The Internet experiments allow us to further acc€sseritys
superior performance over existing solutions in the realdvo

6.1 LAN Testbed Experiments

We evaluateCelerity over a LAN testbed illustrated in Fid.] 7,
where four PC nodeg\ B, C, D) are connected over a LAN dumb-
bell topology. The dumbbell topology represents a poputar s
nario of multi-party conferencing between branchaes. It is also
a “tough” topology — existing approaches, such as Simulaadt
Mutualcast, fail to éiciently utilize the bottleneck bandwidth and
optimize system performance.

480 kbps

480 kbps

Figure 7: The “tough” dumbbell topology of the experimental
testbed. Two conference participating nodeand B are in one
“office” and another twos nod€sandD are in a dfferent “dfice”.

The two “dfices” are connected by directed links between gate-
way node<sE andF, each link having a capacity of 480 kbps. Link
propagation delays are negligible.

In our experiments, all four nodes r@elerity. We run a four-
party conference for 1000 seconds and evaluate the systéan-pe
mance. In order to evaluatgeleritys performance in the pres-
ence of network dynamics, we reduce crossfitaand introduce
link failures during the experiment. In particular, we oduce an
80kpbs cross-tifdic from nodekE to nodeF between the 300th sec-
ond and the 500th second, reducing the available bandwigith b
tweenE andF from 480 kbps to 400 kbps. Further, starting from
the 700th second, we disconnect the physical link betweand
E; this corresponds to a practical situation where nadeiddenly
cannot directly communicate with nodes outside th@¢e” due to
middleware or configuration errors at the gateviay

son, we also show the maximum achievable rates by Simulodst a
Mutualcast, as well as the optimal sending rate of each@essi-
culated by solving the problem ifl](4}}(3) using a centravepl
Fig.[88 shows the utility obtained I§elerityand its comparison to
the optimal. Fig[T8f shows the average end-to-end delay aokisp
loss rate of sessiof. Delay and loss performance of other sessions
are similar to those of sessi@n

In the following, we explain the results according to thréfed-
ent experiment stages.

-
Celerity
® @0 ©
Mutualcast
® O0CF—000E ©Ee—X
Simulcast
® ©

Figure 11: SessioA's trees used by elerity (upon convergence),
Mutualcast and Simulcast in the dumbbell topology, in theealoe
of network dynamics.

6.1.1 Absence of Network Dynamics

We firstlook at the first 300 seconds when there is no crofiictra
or link failure. In this time period, the experimental seg$ are
symmetric for all participating peers; thus the optimaldieg rate
for each session is 240 kbps.

As seen in Figd._8a-Bdelerity demonstrates fast convergence:
the sending rate of each session quickly ramps up to 95% to the
optimal within 50 seconds. Fid._18e shows ti@lerity quickly
achieves a close-to-optimal utility. These observatiodicate any
other solution can at most outperfo@elerityby a small margin.

As a comparison, we also plot the theoretical maximum rates
achievable by Simulcast and Mutualcast in Fifisl[8a-8d. We ob
serve that within 20 seconds, our system already outpesfone
maximum rates of Simulcast and Mutualcast.

Upon convergenceCelerity achieves sending rates that nearly
double the maximum rate achievable by Simulcast and Muasalc
This significant gain is due to th@eleritycan utilize the bottleneck
resource moref@ciently, as explained below.

In Fig. [I3, we show the trees for sessiérthat are used by
Celerity, Mutualcast and Simulcast in the dumbbell topology. As
seen, Simulcast and Mutualcast only explore 2-hop treésfysat
ing certain structure, limiting their capability of utiliy network
capacity diciently. In particular, their trees consumes the bottle-
neck link resource twice, thus to deliver one-bit of infotioa it
consumes two-bit of bottleneck link capacity. For instare tree
used by Simulcast has two branch®s—»> C andA — D passing
through the bottleneck links betwe&hand F, consuming twice
the critical resource. Consequently, the maximum achievaties
of Simulcast and Mutualcast are all 120 kbps. In conti@sterity
explores all 2-hop delay-bounded trees, and upon conveegeti
lizes the trees that only consume bottleneck link bandwisitbe,
achieving rates that are close to the optimal of 240 kbps.

Fig.[81 shows the average end-to-end delay and packet ltss ra
of sessionA. As seen, the packet loss rate and delay are high
initially, but decreases and stabilizes to small valuesraftrds.

Figs. [B3=8H show the sending rate of each session (one 1sessio The initial high loss rate is becau&elerity increases the sending

originates from one node to all other three nodes). For compa

rates aggressively during the conference initializatimgs, in or-

600 ilﬁtea;rzz;aa;e[?;';:ﬁ\zg by Celerity 600 ——Total tree rate achieved by Celerity 600 ‘ ——Total tree rate achieved by Celerity
- Maximum acl‘:ievable rate by Simulcast ---Theoretical optimal rate ---Theoretical optimal rate
500 -+-Maximum achievable rate by Mutualcast 500 -=-Maximum achievable rate by Simulcast 500F -=-Maximum achievable rate by Simulcast
16_7400 Y @ -+-Maximum achievable rate by Mutualcast| n -+-Maximum achievable rate by Mutualcasf]
_iraffic arrives k_X—traff 4 400 ; 3 400 ‘ . 1
g X-traffic arrives fx traﬁ'? departs) X-traffic arrives l«—X-traffic departs) X-traffic arrives =—X-traffic departs
£ 300 : «—Link fails T 300 ‘ «—Link fails T 300¢ ‘ k—Link fails
FER § STt | e R REREEEEt © y S P P [P
200 i @ 2 & 200¥
e ——
00 100 200 300 400 500 600 700 800 900 1000 0O 100 200 300 400 500 600 700 800 900 1000 00 100 200 300 400 500 600 700 800 900 1000
time(s) time(s; time(s)
(a) Rate Performance of Node A (b) Rate Performance of Node B (c) Rate Performance of Node C
L
200 g
o] 0.8 ——average delay from node A to node B
600 —Total tree rate achieved by Celerity] 0.6 —average ge:ay Irom noge 2 io noge g
- i i ——average delay from node 0 noae
Theqre[lcal optlmal rate . 150 —utility value of session A I3 04 g Y
500 -¢-Maximum achievable rate by Simulcast il ! § ion B 202 &,
—~ ---Maximum achievable rate by Mutualcast] utility value of session 5 0O = —
g400 - N > —utility value of session C c 0 100 200 300 400 500 600 700 800 900 1000
) X—traffic arrives [~ X~traffic departs = 100] —utility value of session D % time(s)
T 300 ! —Link fails E —total utility value So3
I PO . [e ---optimal total utility value 2 ——average loss rate from node A to node B
X 200 H /—-—' 50| = 0.2 ——average loss rate from node A to node C|
| I r T S ——average loss rate from node A to node D
100 ; ; 1 o1
| ' ! T ok 'y 2 FETRA ™
% 100 200 300 400 500 600 700 800 900 1000 % 100 200 300 400 500 600 700 800 900 1000 g 0 100 200 300 402"?]2}?5)600 700 800 900 1000
time(s) time(s)
(d) Rate Performance of Node D (e) Total utility of all sessions (f) Average end-to-end delay and loss rate from

node A to other nodes

Figure 8: Performance aEelerityin the LAN Testbed Experiments. (a)-(d): Sending rates a&oeiving rates of individual sessions. (e):
Utility value achieved compared to the optimum. (f): Eneetad delay and loss rate of sessin

w w
1000, 2 g
——total tree sending rate of session A 3 0.8 ——average delay from node A to node B = 0.8 ——average delay from node C to node A|
——total tree sending rate of session B 206 ——average delay from node A to node C| 06 ——average delay from node C to node B
800 ——total tree sending rate of session C 2 0.4 ——average delay from node A to node D) 2 0.4 ——average delay from node C to node D
——total tree sending rate of session D c|D 0'2 c|D 0'2
> - - -optimal sending rate of session A,B,D ~|9 . " APPAAE A, ~|9 '0
5 600 ~--optimal sending rate of session C 2 0 100 200 300 400 500 2 0 100 200 300 400 500
S 8 time(s) 8 time(s)
o] - 1S <
% 400 /7 005 003
x / 204 ——average loss rate from node A to node B} a ——average loss rate from node C to node A
l. A ° 0'3 ——average loss rate from node A to node C| 2002 ——average loss rate from node C to node B
200 i et e ——average loss rate from node A to node D| k] ——average loss rate from node C to node D|
§02 $0.1
=l ‘
! 204, 2 Ll L 0\
0 2 0 100 200 300 400 500 2 0 100 200 300 400 500
0 100 200time(s)300 400 500 S time(s) S time(s)
(a) Rate Performance of all Nodes (b) Average end-to-end delay and loss rate ffoyverage end-to-end delay and loss rate from
node A to other nodes node C to other nodes

Figure 9: Performance @elerityin the Peer Dynamics Experiments. (a)-(f): Sending ratedlafessions. (b)-(c): End-to-end delay and
loss rate of sessioA andC.

der to bootstrap the conference and explore network resdime As seen in Figd_8a-8@elerity quickly adapts to the bottleneck
its. Celerity quickly learns and adapts to the network topology, bandwidth reductionCeleritys adaptation is expected from its de-
ending up with using costfective trees to deliver data. After the sign, which infers from loss and delay the available resewaned
initialization stageCelerityadapts and converges gradually, avoid- adapt accordingly. From Fif]8f, we can see a spike in segston
ing unnecessary performance fluctuation that deteriotates ex- packet loss rate around 300th second, at which time theadlil
perience. By adapting to both delay and loss, we achievedew | bottleneck bandwidth reduces. The link rate control moslihe
rate upon convergence as compared to the case when onlysloss i Celerity senses this increased loss rate, adjusts, and reports the re
taken into accounf[24]. duced (overlay) link rates to node Upon receiving the reports, the
. tree-packing module i€elerityadjusts the source sending rate ac-

6.1.2 Cross Traffic cordingly, adapting the system to a new close-to-optimataiing

Between the 300th second and the 500th second, we introducepoint. At 500th second, the crossfiia is removed and the avail-
an 80kpbs cross-tfiac from nodekE to nodeF. Consequently, the able bottleneck bandwidth betwe&nandF restores to 480kbps.
available bottleneck bandwidth betweBnand F decreases from Celerityalso quickly learns this change and adapts to operate at the
480 kbps to 400 kbps. We calculate the optimal sending rates d original point, evident in Figs_8a-Bb.
ing this time period to be 200 kbps for sessidrsndB, and remain . .
240 kbps for sessior® andD. 6.1.3 Link Failure

1000

1000, 1000 T T
Mutualcast
800 Celerity 800 Celerity 800)
2 n @
g 600 2 600/, £ 600
=1 - % % Celerity
© 400j; ¥ < 400 ‘T 400
14 P a4 24 il Y
200 : 200 200, "
Simulcast Simulcast Simulcast
GQ 100 200 300 400 500 600 700 00 100 200 300 400 500 600 700 OO 100 200 300 400 500 600 700
time(s) time(s) time(s)
(a) Sending Rate of Node A (Hong Kong) (b) Sending Rate of Node B (Hong Kong) (c) Sending Rate of Node C (Redmond)
1000 2800 Celerit 800
3000 Y, 700 Celerity
. 800 Celerit 2500 600
a Y 2 Mutualcast 500!
=™ e % o Wi i £
= =< = 4
% 400 {%?‘ tan % 1500 ség m = 00 Simulcast Mutualcast
‘Jw A x 300
24 ¥ iz m}" gfi !
ool simudcast 110 P | %WME{W 1000 A A A oS 200
LM Tt A Kbt it A Y 500 Simulcast 100
C'0 100 200 300 400 500 600 700 G0 100 200 300 400 500 600 700 GO 100 200 300 400 500 600 700
time(s) time(s) time(s)
(d) Sending Rate of Node D (Toronto) (e) Total sending rate of all sessions () Total utility of all sessions
L L &
5 5 g
308 ——average delay from node A to node B| 308 ——average delay from node C to node A o 0.8¢ ——average delay from node D to node A
g 0.6 ——average delay from node A to node C| g 0.6 ——average delay from node C to node B E 0.6r ——average delay from node D to node B
$0.4 ——average delay from node A to node D| $0.4 ——average delay from node C to node D| $ 0.4+ ——average delay from node D to node C|
I I |
0.2 " Y ; P o 0.2 P . IPNDUS SO WY P o 0.2% Al |
NI v e R e Y N Y NS sttt AP i AR A St e
20 100 200 300 400 500 600 700 20 100 200 300 400 500 600 700 20 100 200 300 400 500 600 700
% time(s) % time(s) % time(s)
03 ; 0.3 ; 5 0.3 !
a —+—average loss rate from node A to node B a —+—average loss rate from node C to node A 9 —+—average loss rate from node D to node A|
502 ——average loss rate from node A to node C| 502 ——average loss rate from node C to node B 5 0.2 ——average loss rate from node D to node B
S 01 ——average loss rate from node A to node D S 01 ——average loss rate from node C to node D| S 01 ——average loss rate from node D to node C|
$° $° , e
]] S =]
2 06 100 200 300 400 500 600 700 2 CO 100 200 300 400 500 600 700 2 0'0 100 200 300 400 500 600 700
o time(s) o time(s) o time(s)

(g) Average end-to-end delay and loss rate ffloyverage end-to-end delay and loss rate ffipriverage end-to-end delay and loss rate from

node A to other nodes

node C to other nodes

node D to other nodes

Figure 10: Performance of four-party conferences overriterhet, running prototype systems@élerity, Simulcast, and the scheme |in [4].
(a)-(d): Throughput of individual sessions. (e): Totabilghput of all sessions. (f): Utility achieved byfigrent systems. (g)-(h): End-to-end

delay and loss rate of sessi&nC, andD for the Celerity system.

Between the 700th second and the 1000th second, we dis¢onnecrate drops dramaticallfCelerity detects the significant change and

the physical link betweeA andE. Consequently, nod& cannot
use the 2-hop threes with no@® (D) being intermediate nodes;
similarly nodeC (D) cannot use the 2-hop threes with noiibe-
ing intermediate nodes. They can, however, still use trestvath

nodeB as intermediate nodes. We compute the theoretical optimal

sending rates during this time period to be 240 kbps for abisas.

We observe from Figl_8a that nodés sending rate first drops
immediately upon link failure, then quickly adapts to thevraper-
ating point of around 120 kbps, only half of the theoretigatimal.
This is becaus€elerity only explores 2-hop trees for content de-
livery while in this case 3-hop trees (e.¢.,—» B —» C — D) are
needed to achieve the optimal. It is of great interest toa®pl
source rate control mechanisms beyond this 2-hop treeimack
limitation to further improve the performance without imdng ex-
cessive overhead.

In Figs.[8d, we observe the sending rate of sesBidinst drops
and then climbs back. This is because sesfidmappensto use
the trees with nodé being intermediate nodes right before the link
failure. The link failure breaks sessid@is trees, thus sessidd’s

adapts to use the trees wiBhas intermediate nodes for session
D. SessiorD’s rate thus gradually restore to around the optimal.
These observations show the excellent adaptabilitZelerity to
abrupt network condition changes.

As a comparison, we observe that Simulcast’s maximum achiev
able rates of sessiof, C, and D all drop to zero upon the link
failure. This is because there is no direct overlay link fesaA
andC (D) after the link failure. Consequently, Simulcast is not
able to broadcast the source’s content to all the receivetiseise
sessions, resulting in zero session rates.

6.2 Peer Dynamics Experiments

In order to evaluate th€elerity performance in peer dynam-
ics scenario, we conduct another experiment over the sanié LA
testbed in Figl]7. We first run a three-party conference amone
A, B, andC, at the 120th second, a nodejoins the conferenc-
ing session and leaves at the 300th second, the entire eanfeg
session lasts for 480 seconds.

Fig. [@a shows the sending rate of each session as well as the

optimal sending rate of each session, [Eid[9b-9c show thagee
end-to-end delay and packet loss rate of sesgi@amdC. Delay
and loss performance of sessiBrare similar to those of sessidn

As seen in Fig[[8a, when nodzjoins the conferencing session
at the 120th second, the sending rates of sesajdd andC first
drop immediately, then quickly adapt to close to the optixzdlie
again. This is because when ndd¢oins, the initial allocated rates
for each session in the overlay links from other nodes to ridde
are very low, when nodé, B andC pack trees respectively ac-
cording to the allocated rates to deliver their data to theiwers
including nodeD, the achieved sending rates are low. Theeler-
ity detects the change of underlay topology, updates the &didca
rates and quickly converges to the new close to optimal dipgra
point. When nodé leaves, we also observe thaelerity quickly
adapts to the peer dynamic.

Celerity's excellent performance adapting to peer dynamics is
expected from its design. We involve both loss and queuitayde
in our design, when peers join and leave, loss and queuiray del
reflect such events well, thus allowi@glerityto adapt rapidly to
the peer dynamics. For instance, in this experiment whee Bod
joins the conferencing session, we observe a spike in sed&o
end-to-end delay and packet loss rate in Eig. 9b.

In Fig. another important observation is that as comptred
the conference initialization stage, the convergencedspéeode
C after nodeD leaves the conferencing session is slow. This is
because during the conference initialization sta@elerity uses
a method called "quick start" described in Secfiod 5.5 taklyi
ramp up the rates of all sessions, while after the initigilirastage,
such method is not used in order to avoid unnecessary peafaren
fluctuation. Itis of great interest to design source ratéredbmech-
anisms to achieve quick convergence in peer dynamics soenar
without incurring system fluctuation.

6.3 Internet Experiments

Beside the prototyp€elerity system, we also implement two
prototype systems of Simulcast and Mutualcast, respégtiBeth
Celerityand Mutualcast use the same log utility functions in their
rate control modules. We evaluate the performance of thgse s
tems in a four-party conferencing scenario over the Interne

These results show that our theory-inspi@eleritysolution can
allocate the available network resource to best optimieesjistem
performance. Mutualcast aims at similar objective but antyks
the best in scenarios where bandwidth bottlenecks resijeabn
the edge of the networkl[4].

Figs. [TO¢EITi show the average end-to-end loss rate angt dela
from source to receivers for sessién sessionC and sessiomD.
The results for sessioB is very similar to sessioA and is not in-
cluded here. As seen, the average end-to-end delays ofalbss
are within 200 ms, which is our preset delay bound ffiective
interactive conferencing experience. The average erahtbloss
rate for all sessions are at most 1%-2% upon system stahiliza

The overall operation overhead Gklerityin the 4-party Inter-
net experiment is around 3.9%. In particular, the packetrmax
accounts for 3.4%, and the link-rate control and link-stafgort
overhead is around 0.5%.

7. CONCLUDING REMARKS

With the proliferation of front-facing cameras on mobileides,
multi-party video conferencing will soon become an utiltbat
both businesses and consumers would find useful. Gfgterity,
we attempt to bridge the long-standing gap between the t#t ra
of a video source and the highest possible delay-boundeatibro
casting rate that can be accommodated by the Internet where
bandwidth bottlenecks can be anywhere in the netwdhis paper
reportsCeleritysolution as a first step in making this vision a real-
ity: by combining a polynomial-time tree packing algorittam the
source and an adaptive rate control along each overlayvialare
able to maximize the source rates without angriori knowledge
of the underlying physical topology in the Internetelerity has
been implemented in a prototype system, and extensiveiexger
tal results in a “tough” dumbbell LAN testbed and on the In&r
demonstratéCeleritys superior performance over the state-of-the-
art solution Simulcast and Mutualcast.

As future work, we plan to explore source rate control mecha-
nisms beyond the 2-hop tree-packing limitationdalerity to fur-
ther improve its performance without incurring excessiverbead.

We use four PC nodes that spread two continents and tree counJA\PF}El\“:)IX

tries to form the conferencing scenario. Two of the PC nodes a

in Hong Kong, one is in Redmond, Washington, US, and the last

one is in Toronto, Canada. This setting represents a cominbalg
multi-party conferencing scenario.

We run multiple 15-minute four-party conferences usingaiee
totype systems, in a one-by-one and interleaving manneseléet
one representative run for each system, and summarizeptiréar-
mance in Fig[ID.

A. Proof of Theorem 2

Proof: Firstly, we prove the minimum of the min-cuts separating
the source and receivers by, can be expressed as

Ru(Cm, D) = min min {Cmeov. cm,\,ﬂtj}

velrijuthg)

Figs.[I0#-10d show the rate performance of each session. (Re-

call that a session originates from one node to all otheethoeles.)
As seen, all the session ratesGelerity quickly ramp up to near-
stable values within 50 seconds, and outperforms Simulaisin
10 seconds. Upon stabilizatioBelerity achieves the best through-

In the overlay graptDp, the minimum of the min-cuts is migr

MinCut(s tj). whereT is the set of receivers, arMinCut(s tj)
is the min-cut separating the soursend receivett;. The min-
cut separating the source and a receiver can be achieveddirygfin

put performance among the three systems and Simulcast is thethe maximum unit-capacity disjoint paths from the source¢h®

worst. For instance, all the session rate€#lerityis 2x of those
in Simulcast and Mutualcast, except in session C where Ntdst
is able to achieve a higher rate th@elerity.

We further observ€eleritys superior performance in Fig._1l0e,
which shows the aggregate session rates, and in[Eid. 10&hwhi
shows the total achieved utilities. In both statistiCglerity out-
performs the other two systems by a significant margin. Sipeci
cally, the aggregate session rate achieve@eélerityis 2.5x of that
achieved by Simulcast, and is 1.8x of that achieved by Muasil

receiver. The structure of the graghy, is so special that for each
receivert; we can compute the maximum number of edge-disjoint
paths fromsto t; easily.

In the graphD,, we represent each edge with capacitjpy m
parallel edges, each with unit capacity. For each receivde nsay
tj, due to the special structure of the graph, we can find thege-ed
disjoint paths in a very simple way. Since there are only g-ho
paths in the graptDy, so a path frons to t; must go through one
of the intermediate nodes. Thus for each intermediate remes,

we can find mir{cmsﬁe, Cmeost, } edge-disjoint paths frorato e and
then tot;. Therefore, we can have

MinCut(s tj)= > min{Gnsv. Cmyo)
Ve(rijuihg)
Consequently, the minimum of the min-cuts separating thecgo
and receivers can be expressed as

Rn(Gn, D) = min MiN {Cms > Cmyt; |
velrijuh)

Next, we prove the tree packing algorithm can achieve thé-min
mum of the min-cuts separating the source and receiver itwih
layer graphDn,. This tree packing algorithm is developed based on
the Lovasz's constructive prodf[14] to Edmonds’ Theorér][2
To proceed, we firstly apply the Lovasz’s constructive prtoadur
two layer graphD,, and based on the proof, we can directly have
the tree packing algorithm.

Notations. Let G be a digraph with a source. We assume
all edges have unit-capacity and allowing multiple edgesfxh
ordered node pail(G) andE(G) denote its vertex set and edge set.
A branching (rooted aa) is a tree which is directed in such a way
that each receiver has one edge coming in. &itof G determined
by a setS c V(G) is the set of edges going froBito V(G) — S and
will be denoted byrg (S), we also sebg(S) = | A (S)I.

Theorem: In the two layer grapty,, if 6c(S) > k for every
S c V(G), a € S, At € V(G) — S then there ar& edge-disjoint
branchings rooted &

Lovasz’s constructive proof\fe use induction ok. It is obvious
that the theorem holds whé= 0.

Let F be a set of edges satisfying the following coditions

(i) F is an arborescence rootedaat

(Definition: In graph theory, an arborescence is a directed graph

in which, for a vertexu called the root and any other vertexhere
is exactly one directed path fromto v. Equivalently, an arbores-
cence is a directed, rooted tree in which all edges point dveay
the root. Every arborescence is a directed acyclic graptDbut
not every DAG is an arborescence.)

(i) 6c-r(S) = k-1 foreveryS c V(G), ae S, It € V(G) - S.

If F cover all receivers;, i.e., itis a branching then we are fin-
ished:G - F containsk— 1 edge-disjoint branchings afdis in the
kth one.

If F only covers as€f c V(G), which do not cover all receivers,
i.e., there exist some receiverg T. We show we can add an edge
e eAg (T) to F so that the arising arborescereer e still satisfies
(i) and (ii). Noting that ifr; € T, thent; € T, because there are
infinite unit-capacity edges from to t;, adding a edge from to t;
to F can still satisfies (i) and (ii).

Consider a maximal s& c V(G) such that

(@acA

(b) There is at least one receier AU T;

(¢)dc-r(A) =k-1.

If no suchA exists any edge

{(I’i, tj)|l'i e, tj (S V(G) -T)
U{(hi, tj)|hi eT, tj € V(G) -T)
Ul(a riity ¢ TYU {(a h)lh ¢ T)

can be added tb.
Otherwise,
Since

e €

6G_F(AU T) = 6G(AU T) >k,

we haveAUT # A T ¢ A. Also,

06-r(AUT) > dc-r(A)

and so, there must be an edge (x, y) which belongs tag_¢
(AUT)- ag_r (A).Hencexe T — Aandy e V(G) - T — A. We
claime can be added tB, i.e.,F + e satisfies (i) and (ii).

Noting that due to the special structureff,,

e = (XyelrtneT-AteVG)-T-A
U{(hi, tj)|hi eT-A tj € V(G) -T-A}

Soy must be a receiver.

Itis obvious that~ + e still satisfies (i) .

LetS c V(G), ae S, 3t € V(G) - S. If e¢ag_r (S) then

06-F-e(S) = d6-F(S) 2 k- 1.
If eenc_r (S)thenxe S, y € V(G) — S. We use the inequality

06-F(SUA) +66-r(SNA) < 66-£(S) + 5c-r(A)

which follows by an easy counting.
Sincea e SN A, and there exist a receivgre V(G) — SN A, we
have

(13)

de-r(A) =k-1,
and by the maximality oA,

6e-F(SNA)>k-1,

6e-F(SUA) >k,

sinceSU A # Aasx € S — A and there is at least one receiver
y¢(SUAUTasy¢ SUA, y¢ T. Thus [I3) implies

66-r(S) > k

and so,

Sor-o(S) > k-1

Thus, we can increase till finally it will satisfy (i), (ii) and
reach all receiver. Then apply the induction hypothesisGr-F.
This completes the proof.

]

The obove proof yields arflecient algorithm to construct a max-

imum set of edge-disjoint trees reaching all receivers. Let

K@) = 66(S)

min
ScV(G),aeS, 3t eV(G)-S

These trees can be constructed edge by edge. At any stage, we

can increas& by checking at modsE(G) edgese whether or not

KG-F-¢>k-1

Since determiningk(G) can be done irp steps, wherg is a
polynomial inV(G), E(G). Thus, we can obtaik edge-disjoint
trees in at mosD(pE(G)) steps.

Over the two layer grap®,,, The algorithm packs unit-capacity
trees one by one. Each unit-capacity tree is constructeddsdg
ily constructing a tree edge by edge starting from the soarzk
augmenting towards all receivers. It is similar to the gyeedep-
acking algorithm based on Prim’s algorithm. The distincties in

the rule of selecting the edge among all potential edges.etige
whose removal leads to least reduction in the multicastagpaf
the residual graph is chosen in the greedy algorithm.

Tyv_C)t
a concave function and Y., a,e% is its subgradient with

respect t@ye. Therefore, we just need to shdw, (Ry) (%ne is a

Because we alway choose the edge whose removal leads to leastuPgradient ot (Ry) with respect tane.

reduction in the multicast capacity of the residual graphk, édge
we choose can alway satis§(G—F —e) > k—1. Therefore, based
on the above proof, finally we can obtdiredge-disjoint trees.

Due to the special structure @, the time complexity of com-
putingK(G) is O(V(G) = E(G)). Therefore, the time complexity of
the algorithm iO(V(G) * E?(G)).

]

Proof of the inequality (13).

Proof: supposee = (X, y) €ac_r (SUA), thenx e SUA, and
y € V(G) — S — A, thus we must have

e€engr (S)VU scr (A).

Similarly, suppose = (X, y) €ac_r (SN A), thenx e Sn A, and
y € V(G) - SN A we also have

eengr (S)U scr (A).

if e= (X Y) €ac_r (SUAN ac_F (SNA),thenxe SN A, and
y € V(G) — S — A. Therefore we have

e€nrgr (S)N 2cr (A).

Base on the above observation, we can have

3c-F(SUA) +06r(SNA) < 66¢(S) +dcr(A)

B. Proof of Corollary 2

Proof: Let a length{E| binary vectorly be the indicator vector for
edge seKX C E; its e-th entry is 1 ifeeX, and 0 otherwise.

SinceRy(Cm, D) is the minimum min-cut oveDy,. Therefore it
can be expressed as

Rm(Cm, D) = min min _l5u)Cnm
i€T U:seU, tjeU
wheres(U) denote the set of edges going frehioU. SoR,(cm, D)
is the pointwise minimum of a family of linear functions. L€}
andc?, denote two dterent link rate vector, andy + A, = 1, 1; >
0, 1, > 0.
Then we have

Rm(ﬂlcﬁ] + /12C,,2n, D)

min- min _lsu) (141G + ,C2
ieT U:seU,tj eU © (G m)

v

min - min 50 (¢
ieT U:seU,t U W) (A1)

+min min Iy (1,62
ieT U:seU,tj eU ©(2Cr)

= Ru(41Ch, D) + Ry(A2¢%, D)
= 11Ry(Ch, D) + 22Rn(c2, D)

SoRy(cm, D) is a concave function of the overlay link rates
| |

C. Proof of Proposition 1

Proof : Forany eE andm = 1,... M, letc{, andc?, denote two
T +)
differnet value. It is easy to verified that}),. foa' ¢ @ dzis

SinceU, (Ry) is a increasing and strictly concave function and
Rn(cm, D) is a concave function with respectdg, which has been
proved in Corollary 1. Then we can have

Un (RY) - Un(R?) < U5, (RD) (RS - RD)

2)
R - <))

~ OCme

SincéJ , (Ry) is nondecreasing, we hauk, (Rfﬁ)) > 0. Then

IN

Un(RY) - Un(RY) < UL(RY)RY-RD)
Uy (R2) zcl("%)(c(l) _
m.e

me
ThereforeU;, (Ry) s is a subgradient d » (Ry) with respect
t0 Crme-

IA

2
Cie

]
D. Proof of Theorem 3
Proof: Let g = rp%xcil, A=diag(C,, leL). let (c*, p*) be a sad-

dle point of the Lagrangian functio@ (c, p). We useG. (c, p)and
Gp(c, p) to denote a subgradient gf(c, p) with respect tcc and a
subgradient of7 (¢, p)with respect tap. Suppose thgt;,(Rn(Cm))!
¥YmeM is upper bounded by a positive constaht

Under the assumption thiat; (Rin(cm))l YmeM is upper bounded
by a positive constant), there is a constant > 0 , such that
||gc(c<k>, p(k>) ll2 < &, andliG, (¥, p<k>) Il < a forall k> 0.

In order to prove theorem 2, we need to prove the following two
lemmas.

Lemma 1: (a) For anyc > 0 and allk > 0,

I —clp < 19 - el + 20 [G (¥, p¥)

-G (c. p9)] + lGe (¥, p9) I
(b)For anyp > 0 and allk > 0,

(p(k+1) _ p)T A(p(k+1) _ p) < (p(k) _ p)T A(p(") _ p)
—Z[Q(C(k), p(k)) _ Q(C(k), p)]
+alG, (e,) 11

Proof: (a) From the algorithm (9)-(10), we obtain that for any
c>0andalk > 0,

IN

I —clf < 11 +age(c¥, g9) - clip
:
= [Ic% - ¢l + 206, (¢, p¥) (¥ - ¢}
+a?|Ge (%,) |13

Since the functiorg (c, p) is concave inc for eachp > 0, and
sinceg. (c®, p®) is a subgradient @ (c, p¥) with respect tec at
¢ = ¢, we obtain for anyc,

G (C(k)’ p(k))T (C(k) _ c) < g(c(k), p(k)) - Q(C, P(k))

Hence, for anyc > 0 and allk > 0,

1 a
= 100 _q2 -2 A2
Zka”C clz 54

I D —cf < 11 - o3 + 20 (G (¥, g9)

1 a
_— K _ A2 _ 100 _ ~2] &2
~6(c.p¥)] + ?liGe (. p)13 < i 19~ A 160 -] -5
k-1
(b) Similarly, from (9)-(10), for anyp > 0le£L, we have, %Z c, p?) - G (c. p?)]
i=0
Cllpl(kﬂ) _pP < C||p,(k) _pP- 2(p(k) 3 p|)§p| (c(k), p(k)) hoﬁjir;ce the functiorg (c, p) is linear inpfor any fixedc > 0, there

+Cil|gp. (. p9) 2
G (e pk) = = Zg (c.n)

By adding these relations over &l£. we obtain for anyp > 0

dallk > 0. - .
and afic= Combining the preceding two relations, we obtain for any 0

k+1) T (k+1) (K) T (K) andic= 1
(p P -p) A(P*Y-p) < (P¥-p) A(PY-p)
1
~2(p -)" Gp(c. 1Y) el — o - 507 < %Zo G (<" p") - 6 (c. pk)

+9lGp (¥, p9) 113
p() 2 thus establishing relatiof {1L4).

SinceG,, (c(k), p(k)) is a subgradient of the linear functig(c(k), p) Sgngr?g.);bg using Corollary 1 and Lemma 1(b),we have foy an
atp= p®, we have for allp. = -
X T X . T X
T P —p) AP -p) < (I"-p) A(P"-P
(P9 = p)' Go(c¥, p9) = G (¥, p) - G (c¥, p) () Al) (_2 [g(c)(i) p£>))
Therefore for anyp > 0 and allk > 0. ' ’
_g(c(l)’ p)] + gAZ
(p‘k*l) _ p)T A(p(k+1) _ p) < (p(k) _ p)T A(p(k) _ p) By adding these relations ovek 0O, ...,k — 1, we obtain for any
p>0andk>1,
—Z[Q(C(k), p(k)) _ g(c(k), p)]
+glG (<, P9) 13 13 (o ()) (0] 922
k216(<") =6 (e p)] - -
~ ~ . -
Lemma 2: let ¢(k) and p(k) be the iterate averages given by (p(O) - p)T A(p‘o) _ p) (p(k) - p)T A(p(k) - p)
B B = o B o
. ASI . 10 0 _p) A(gO -
_ = (i) - = (i) A
=72 B0= (-0 A -p)
iz i= 2k
we then have for ak > 1, because the functiog (c, p) is concave irc for any fixedp > 0,
we have
-1 ar? 15
llc? - - —- < = > "G (c", p?) ¢, pk 14
Sollc? =l - = k;)-Gcpk) (19) —Zg (. p) < 6 0. P

. Combining the preceding two relations, we obtain for ary 0
po - p) A(p(O) - p) andk > 1,
2k

1 2
%Z 1) -G (09, < T+ (
i=0

(15) g2 (FO-p) A(p?-p)

18 .
Proof: by using Corollary 1 and Lemma 1(a), we have for any RZ G(c" p") -G @M. p < N K
c>0andi >0, i=0
=
1 Our proof of this theorem is based on Lemma 2. In particular, b
o [llc(”l) -z —1c® - c||§] - %AZ < g(c(i), p(i)) letting c = ¢* andp = p’ in equations[(I4) and(15), repectively,
(04

we obtain,
—g(c, p<i>)

. . . . 2 k-1
By adding these relations ovek 0, ...,k — 1, we obtain for any -1 ©) _ o2 A 3_L (.) (.) .o
¢>0andk> 1, slle®? = cl - —- < k; o, p) - G (c". p(K))

g2 (P9-p) A(pO - p)
2 " 2K

1 S i i P «
E;g(cﬂ,) -G @K, p) <
=l
By the saddle-point relation, we have

Gk, p)<g(c,p)<g(c, pk)
Combining the preceding three relations, we obtain fok all1,

-1 an? k=t))
sl —clB - < > 6(c. ") -6(c.p)

<
2 i=0

g2 (B7-p) AR%-p)

2 2k

IN

Algorithm 1 Link Rate Control
/*
Every 200ms each peer measures the loss rate and queuiggftlela
its incoming links and gets the source sending rate from dckets
of corresponding session source it has received and atljiestates
of these links based on the link rate control algorithm, ameht
sends them to their corresponding upstream senders forethie n
rates to take féect.
S denotes the set of all sessiorss.denotes the session of paar
En denotes the set of incoming links of pear | is the critical
link indicator of link e for sessions,. If eis a critical link, then
Ime = 1, otherwise)me = 0.
*/
1: for all eeEy, do
/*get the loss rate of the link*/
2: lossrate—GetAveragelLoss();
/*get the queuing delay of the ling*/

3: queuing delay—GetAverageQueuingDelay();
4: for all seS do
5: if S# sythen

/* get the source sending rate of sess&oi
6: sendingrate—GetSourceSendingRate();

/* get the critical cut indicator of linke

for sessiors */

7: Ime«—GetCriticalCuté ,m);
8: delta—step sizdB/sendingrate
-lossratequeuing delay);
9: list.push_back(pairs, delta>);
10: end if
11: end for
/* send the updated rate to the upstream of the link *
12: Updateg, list);
13:end for

8. REFERENCES

[1] Skype, “http//www.skype.conintl/en-ughome.”

[2] Cisco,
“http://newsroom.cisco.cofdlls/201Qprod_111510c.html.”

[3] J. Li, P. A. Chou, and C. Zhang, “Mutualcast: afig@ent
mechanism for content distribution in a P2P network,” in
Proc. ACM SIGCOMM Asia WorkshpBeijing, 2005.

Algorithm 2 Data Multicast
/*

Every 300ms each source peer packs trees using the linls $tate
collects and calculates the critical cut information, amehtappend
the critical cut information and source sending rate in thader of
the packets that it will send out through these trees.
S denotes the set of all sessiomss.denotes the session of paer
Link_States, is the collected links states for sess&n
*

/
/* source peem packs delay-limited trees/ *
1: Trees—PackTreel(ink_Statesg)
/* calculate the critical cut information for sessisp
2: |y «CalculateCriticalCul(ink_S tatesg);
/* deliver packet 7
3: while (CanSendPacket(iJo
/* get a tree with the maximum rate among the trees *
tree—GetATree(reey;

datapacket-CreatePacket();

sendingrate< 0;

for allteT reesdo

sendingrate « sendingrate + t.rate;

end for
/* add the critical cut information and source_sending_rate
to the header of the packet *
10: Append{atapacketl,, sendingrate);
11: Deliver@atapackettree);
12:end while

CoNTA

[4] M. Chen, M. Ponec, S. Sengupta, J. Li, and P. A. Chou,

“Utility maximization in peer-to-peer systems,” in

Proc. ACM SIGMETRICSAnnapolis, MD, 2008.

I. E. Akkus, O. Ozkasap, and M. Civanlar, “Peer-to-peer

multipoint video conferencing with layered vided@urnal

of Network and Computer Applicatigngol. 34, no. 1, pp.

137-150, 2011.

M. Ponec, S. Sengupta, M. Chen, J. Li, and P. Chou,

“Multi-rate peer-to-peer video conferencing: A distribdt

approach using scalable coding,”IlBEE International

Conference on Multimedia and Exgédew York, 2009.

[7] ——, “Optimizing Multi-rate Peer-to-Peer Video

Conferencing ApplicationsEEE Trans. on Multimedia

2011.

C. Liang, M. Zhao, and Y. Liu, “Optimal Resource

Allocation in Multi-Source Multi-Swarm P2P Video

Conferencing Swarmsgccepted for publication in

IEEE/ACM Trans. on Networking?011.

[9] A. Akella, S. Seshan, and A. Shaikh, “An empirical

evaluation of wide-area internet bottlenecks,Piroc. of the

3rd Internet Measurement Conferen@003.

N. Hu, L. E. Li, Z. M. Mao, P. Steenkiste, and J. Wang,

“Locating internet bottlenecks: Algorithms, measuremsent

and implications,” inProc. of ACM SIGCOMM2004.

[11] V. Vazirani,Approximation algorithms Springer Verlag,
2001.

[12] J. Mo and J. Walrand, “Fair end-to-end window-based
congestion control [TEEE/ACM Trans. Netw.no. 5, pp. 556
—567, Oct. 2001.

[13] L. Guo and I. Matta, “QDMR: An fficient QoS dependent
multicast routing algorithm,” ifProc. IEEE Real-Time
Technology and Applications Symposj@anada, 1999.

[14] L. Lovasz, “On two minimax theorems in graph theory,”

(5]

(6]

(8]

[10]

Journal of Combinatorial Theory, Series ®l. 21, no. 2, pp.
96-103, 1976.

[15] Y. Wu, M. Chiang, and S. Kung, “Distributed utility
maximization for network coding based multicasting: A
critical cut approach,” ifProc. IEEE NetCod 20Q62006.

[16] K. Arrow, L. Hurwicz, H. Uzawa, and H. ChenerStudies in
linear and non-linear programming Stanford university
press, 1958.

[17] A. Nedic and A. Ozdaglar, “Subgradient methods for
saddle-point problemsJournal of optimization theory and
applications vol. 142, no. 1, pp. 205-228, 2009.

[18] R. Bruck, “On the weak convergence of an ergodic iterati
for the solution of variational inequalities for monotone
operators in Hilbert spaceJournal of Mathematical
Analysis and Applicationwol. 61, no. 1, pp. 159-164, 1977.

[19] F. Kelly, “Fairness and stability of end-to-end conti@s
control,” European Journal of Contrplol. 9, no. 2-3, pp.
159-176, 2003.

[20] S. H. Low, L. Peterson, and L. Wang, “Understanding wega
A duality model,”Journal of ACM vol. 49, no. 2, pp.
207-235, Mar. 2002.

[21] D. P. Bertsekad\onlinear programming Athena Scientific
Belmont, MA, 1999.

[22] J. Park, M. Gerla, D. Lun, Y. Yi, and M. Medard, “Codecast
a network-coding-based ad hoc multicast protoddlifeless
Communications, IEEFol. 13, no. 5, pp. 76-81, 2006.

[23] R. Ahlswede, N. Cai, S. Li, and R. Yeung, “Network
information flow,”|EEE Trans. on Information Theory
vol. 46, no. 4, pp. 1204-1216, 2000.

[24] X.Chen, M. Chen, B. Li, Y. Zhao, Y. Wu, and J. Li,
“Celerity: Towards low-delay multi-party conferencingesv
arbitrary network topologies,” iIACM NOSSDAV2011.

[25] J.Edmonds, “Edge-disjoint branching§bdmbinatorial
Algorithms, ed.R.Rustipp. 91-96, 1973.

	1 Introduction
	1.1 Contribution
	1.2 Paper Organization

	2 Problem Formulation and Celerity Overview
	2.1 Settings
	2.2 Problem Formulation
	2.3 Celerity Overview

	3 Packing Delay-bounded Trees
	3.1 Pack Delay-bounded Trees With Helpers Existing

	4 Overlay Link Rate Control
	4.1 Considering Both Delay and Loss
	4.2 A Loss-Delay Based Primal-Subgradient-Dual Algorithm
	4.3 Computing Subgradients of Rm(bold0mu mumu ccccccm,D)

	5 PRACTICAL IMPLEMENTATION
	5.1 Peer Functionality
	5.2 Critical Cut Calculation
	5.3 Utility Function
	5.4 Opportunistic Local Loss Recovery
	5.5 Fast Bootstrapping
	5.6 Operation Overhead
	5.7 Peer Computation Overhead

	6 Experiments
	6.1 LAN Testbed Experiments
	6.1.1 Absence of Network Dynamics
	6.1.2 Cross Traffic
	6.1.3 Link Failure

	6.2 Peer Dynamics Experiments
	6.3 Internet Experiments

	7 Concluding Remarks
	8 References

