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Abstract—Groups are becoming one of the most compelling
features in both online social networks and Twitter-like micro-
blogging services. A stranger outside of an existing group may
have the need to find out more information about attributes of
current members in the group, in order to make a decision to
join. However, in many cases, attributes of both group members
and the stranger need to be kept private and should not be
revealed to others, as they may contain sensitive and personal
information. How can we find out matching information exists
between the stranger and members of the group, based on their
attributes that are not to be disclosed? In this paper, we presenta
new group matching mechanism, by taking advantage private set
intersection and ring signatures. With our scheme, a stranger is
able to collect correct group matching information while sensitive
information of the stranger and group members are not disclosed.
Finally, we propose to use batch verification to significantly
improve the performance of the matching process.

I. I NTRODUCTION

As online social networks and Twitter-like micro-blogging
services redefine our lifestyle, groups are becoming one of
the most frequently used features. Groups are, in general,
formed with common attributes, such as geographic locations
and hobbies. However, the features of a group are generally
described by only a few keywords or a short description, which
sometimes is not enough for users to make decisions when
choosing an appropriate group for themselves. Especially,
when several groups have similar (or even the same) keywords
and descriptions, it is very inconvenient for users to choose
the most suitable one among these groups. In order to make a
better decision when choosing a group to join, a stranger with
a profile of his own attributes — who is still an outsider of the
group — needs to collect detail matching information from all
the group members’ profiles. Such a problem is referred as to
group matching.

In most situations, attributes of users are sensitive, suchas
personal health records and religious preferences. It is typical
for a user to store these attributes privately [1], so that only
his friends or members in the same group are able to reveal
these attributes, but strangers or any third party cannot learn
these sensitive information. Unfortunately, collecting group
matching information using these sensitive attributes may
introduce a number of privacy problems. On one hand, since
the stranger is not familiar with the group, the stranger does
not want to reveal his sensitive attributes to any group member
during the matching process. On the other hand, because the
stranger is an outside and untrusted user to the group, each

group member is reluctant to reveal his own attributes and the
exact matching results between two entities to the stranger.

To make matters more challenging, each group member
needs to generate a signature on his matching response,
which contains matching information between the stranger and
himself, and sends the signature and the matching response
together to the stranger, so that the stranger is convinced the
matching response is reliable and correct. Unfortunately,due
to the unforgeability of signatures (only the entity with the
knowledge of the private key can create valid signatures), the
stranger is able to learn the identity of the signer on each
matching response, and reveal exact matching information
between himself and each group member.

In this paper, we proposed Gmatch, a novel secure and
privacy-preserving group matching scheme in online social
networks. We utilize private set intersection [2] in Gmatch, so
that the stranger is able to collect matching information from
the group while both the stranger and each group member are
able to preserve sensitive attributes to each other. Meanwhile,
with ring signatures [3], [4], the stranger is convinced that
matching information from the group is correct, but he cannot
learn exact matching information between himself and each
group member. In addition, we improve the efficiency of the
matching process using batch verification.

The remainder of this paper is organized as follows: In Sec-
tion II, we introduce the system model and design objectives.
In Section III, we briefly describe cryptographic primitives we
utilized in Gmatch. We then present the details of Gmatch in
Section IV. Section V provides a thorough security analysis,
and Section VI evaluates the performance of Gmatch. Finally,
we briefly discuss related work in Section VII, and conclude
this paper in Section VIII.

II. PROBLEM STATEMENT

A. System Model

Our system is a social network, which includes astrangerS
and alld group membersP1, ...,Pd in the groupP (as shown
in Fig. 1). The strangerS, who is not a member of the groupP,
hask attributes in his profile and thej-th attribute is denoted as
as,j . The stranger’s profile is denoted asAs = {as,1, ..., as,k}.
Group memberPi hasm attributes and the profile of this
group member is denoted asAi = {ai,1, ..., ai,m}. In our
model, we assume all group members have the same size
of profile. Attributes in every user’s profile are private and
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sensitive, which are stored and maintained locally by each
user. Note that we also assume there does not exist of a
third party that first collects all the group members’ profiles,
and then simply completes group matching between itself
and the stranger. Even if there exists a group manager who
maintains basic activities of the group, such as the changesof
membership, it is still not able to access sensitive attributes of
group members. The stranger completes group matching in a
distributedmanner [5].

Group matching information
profile

profile

profile

profile

profile

profile

profile

profile

Pi

Stranger S

Group P

As = {as,1, ..., as,k}

Ai = {ai,1, ..., ai,m}

Fig. 1. StrangerS wants to collect group matching information from group
P based on his attribute setAs.

During group matching, this strangerS wishes to collect
group matching information from groupP based on his
profile. If an attribute in a group member’s profile is equal
to an attribute in the stranger’s profile, it is then referredto as
a matched attribute. Otherwise, it is called anunmatched at-
tribute. The total number of group members that has the same
attribute with the attributeas,j , is denoted as thematching
degreeDj of attributeas,j . The group matching information
from the groupP is described asD(P) = {D1, ..., Dk}. Each
group memberPi is asked to provide matching information
to strangerS based on profileAi, so strangerS can calculate
group matching informationD(P) from groupP.

B. Privacy Threats

In this paper, we assume the stranger is honest-but-curious.
It means the stranger will honestly follow the protocol to
collect group matching information, but may attempt to learn
more information than allowed.

C. Design Objectives

During the group matching, our scheme should be able
to provide the following desirable privacy properties. (1)
Stranger’s Attributes Privacy : The stranger does not reveal
any attribute in his profile to any group member. (2)Group
Members’ Attributes Privacy : The stranger only obtains
matched attributes that both in his profile and some group
member’s profile, while the unmatched attributes in group
members’ profiles are not disclosed to the stranger. (3)Exact
Matching Information Privacy : The stranger is able to com-
pute group matching information, while any exact matching
information between himself and each group member is not
revealed.

III. PRELIMINARIES

In this section, we briefly introduce cryptographic primitives
that we implement in Gmatch.

A. Bilinear Maps

Let G1, G2 andGT be three multiplicative cyclic groups of
prime orderp, g1 be a generator ofG1, andg2 be a generator
of G2. A bilinear mape is a mapG1 × G2 → GT with
the following properties: (1)Computability : there exists an
efficient algorithm for computing mape. (2) Bilinearity : for
all u ∈ G1, v ∈ G2 anda, b ∈ Zp, e(ua, vb) = e(u, v)ab. (3)
Non-degeneracy: e(g1, g2) 6= 1.

B. Ring Signatures

The concept of ring signatures was first proposed by Rivest
et al. in 2001 [3]. A ring signature scheme has the property
that, a verifier is convinced that a ring signature was produced
using one of group members’ private keys, but this verifier is
not able to determine which one.

C. Private Set Intersection

Private set intersection [2], [6], [7] enables two parties to
calculate the intersection of their private sets without leaking
any additional information. Private set intersection can be
construct using additive homomorphic encryption, such as
Paillier cryptosystem [8]. The additive homomorphic encryp-
tion algorithm Enc(·) in [8] is able to complete following
operations, without knowing the corresponding plaintexts.

• GivenEnc(m1) andEnc(m2), outputEnc(m1+m2) =
Enc(m1) · Enc(m2).

• GivenEnc(m1) and a constantc, outputEnc(c ·m1) =
Enc(m1)

c.

IV. GMATCH : SECURE AND PRIVACY-PRESERVING

GROUPMATCHING

A. Overview

In this section, we introduce Gmatch, a secure and privacy-
preserving group matching scheme. By utilizing private set
intersection, the stranger can learn the matching information
from the group without revealing any unmatched attributes in
group members’ profiles. With ring signatures, the strangeris
convinced that a matching response is correct and generated
by a group member, yet cannot distinguish this matching re-
sponse belongs to which particular group member. Exploiting
the properties of bilinear maps, Gmatch can support batch
verification, which is able to greatly improve the efficiency
of verification of ring signatures. In addition, with minor
modifications in the construction of Gmatch, we can achieve
even higher privacy levels.

B. Gmatch

Gmatch includes four steps:Setup, Compute, Evaluate,
Match. In Setup, strangerS and each group member generate
their own public/private key pairs. InCompute, strangerS first
generates a polynomial, where each attribute in his profile is
a root of this polynomial and all the roots are in his profile.
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Then, strangerS encrypts all the coefficients of this poly-
nomial by performing additive homomorphic encryption, and
sends all the encrypted coefficients to all the group members.
In Evaluate, each group member evaluates a matching value
for each attribute in his own profile using all the encrypted
coefficients, signs a matching response that contains all the
matching values generated by himself, and sends this matching
response and the corresponding signature to the stranger. In
Match, strangerS first checks the correctness of a matching
response by verifying its signature, then computes whether
each matching value in this matching response indicates a
matched attribute. After collecting all the matching responses
from all group members, the strangerS calculates matching
degrees for all the attributes in his profile. Details of eachstep
are listed as follows.

Setup. StrangerS generates his public/private key pair
(pks, sks) for additive homomorphic encryption. Here, we
utilize Paillier cryptosystem [8]. The encryption algorithm is
denoted asEnc, and the corresponding decryption algorithm
is denoted asDec. Each group member generate his pub-
lic/private key pair(pki, ski) for computing ring signatures.
The ring signature scheme we used is BGLS [4], which is
based on bilinear maps. The total number of group members
is d. The number of attributes in the stranger’s profile isk,
and the number of attributes in each group member’s profile
is m.

Algorithm 1 KeyGen

Given two multiplicative cyclic groupsG1, G2 with prime
order p and their generatorsg1, g2 respectively, group
memberPi generates his public key and private key as:

1) Pick randomui ∈ Zp.
2) Computevi = gui

2
∈ G2.

Group memberPi’s public key ispki = vi and his private
key is ski = ui.

Compute. StrangerS first constructs ak-degree polynomial
P (x), whose k roots are all attributes in his profile. This
polynomial is described as:

P (x) = (x− as,1)(x− as,2) . . . (x− as,k) =

k
∑

i=0

αix
i. (1)

Clearly, if an attributeai,j from group memberPi is a matched
attribute that equals some attribute in strangerS’s profile, then
ai,j is also a root of thisk-degree polynomialP (x), and we
haveP (ai,j) = 0.

After generating polynomialP (x), strangerS encrypts all
thek+1 coefficients of this polynomialP (x) usingEnc with
his public keypks. He then sends all thek + 1 encrypted
coefficients{Enc(α0), ...,Enc(αk)} to each group member
(as illustrated in Fig. 2).

Evaluate. Group memberPi has m attributes and eval-
uates a matching valuewi,j for each attributeai,j in his
profile. More specifically, group memberPi first computes an
encrypted polynomial valueEnc(P (ai,j)) for each attribute

Stranger S Group member Pi

{Enc(α0), ..., Enc(αk)}

Fig. 2. StrangerS sends all the encrypted coefficients to group memberPi.

ai,j . Due to properties of additive homomorphic encryption
we introduced in Section III, this encrypted polynomial value
Enc(P (ai,j)) can be easily computed byPi’s attribute ai,j
and all the encrypted coefficientsEnc(αi), for i ∈ [0, k], as
follows:

Enc(P (ai,j))

= Enc(α0 + α1ai,j + · · ·+ αka
k
i,j)

= Enc(α0)× Enc(α1)
ai,j × · · · × Enc(αk)

ak
i,j . (2)

After that, group memberPi generates a random numberτi,j ,
and computes a matching valuewi,j of attributeai,j as:

wi,j = Enc(τi,j · P (ai,j) + ai,j)

= Enc(P (ai,j))
τi,j × Enc(ai,j), (3)

whereEnc(ai,j) can be computed using the stranger’s public
key pks and attributeai,j with Enc.

Then, group memberPi constructs his matching response
wwwi = (wi,1, ..., wi,m) using all his matching values, signs
this matching response using ring signatures in Algorithm
2, and sendswwwi = (wi,1, ..., wi,m) and its ring signature
σσσi = (σi,1, ..., σi,d) to strangerS (as shown in Fig. 3).

Algorithm 2 RingSign

Given all the group members’ public keys(pk1, ..., pkd) =
(v1, ..., vd), a matching responsewww, and a private keysks =
us for somes, this group memberus

1) Randomly choosesyi ∈ Zp and computesσi = gyi

1

for all i 6= s and i ∈ [1, d].
2) Computesh = H(www) ∈ G1 and sets

σs =

(

h

ψ(
∏

i6=s v
yi

i )

)1/us

, (4)

whereH : {0, 1}
∗
→ Zp is a full-domain hash func-

tion andψ : G2 → G1 is a computable isomorphism.
3) Outputs the ring signatureσσσ = (σ1, ..., σd) ∈ Gd

1.

Stranger S Group member Pi

{(wi,1, ..., wi,m), (σi,1, ...,σi,d)}

Fig. 3. Group memberPi sends matching responsewwwi and its signatureσσσi

to strangerS.

Match. Upon receiving a matching responsewwwi and its
ring signatureσσσi, strangerS first verifies the correctness
of this matching response according to Algorithm 3. If the
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matching response passes the verification, strangerS decrypts
eachwi,j ∈ wwwi with decryption algorithmDec. If the result
of decryption matches one of his attributes, thenai,j is a
matched attribute. Otherwise, it is an unmatched attribute. This
is because

Dec(wi,j) = Dec(Enc(τi,j · P (ai,j) + ai,j))

= τi,j · P (ai,j) + ai,j , (5)

whereP (ai,j) = 0 andDec(wi,j) = ai,j , if ai,j ∈ As.

Algorithm 3 RingVerify

Given all the group members’ public keys(pk1, ..., pkd) =
(v1, ..., vd), a matching responsewww, and its ring signature
σσσ = (σ1, ..., σd), the stranger

1) Computesh = H(www) ∈ G1.
2) Verifies

e(h, g2)
?
=

d
∏

i=1

e(σi, vi). (6)

If the equation holds, then this matching response is correct
and signed by a group member. Otherwise, it is not.

After decrypting all the matching values from all the group
members, strangerS is able to calculate the matching degree
Dj , for j ∈ [1, k] and obtain group matching information
D(P) = (D1, ..., Dk) about this groupP.

C. Batch Verification

Generally, the stranger in Gmatch has to verifyd matching
responses from all thed group members separately, which
introduces prohibitive huge computation cost to himself. Uti-
lizing properties of bilinear maps, the stranger can reduce
the cost of verification by checking the integrity of all the
matching responses in abatch manner, instead of verifying
them one by one. The details of batch verification are shown
in Algorithm 4.

Algorithm 4 BatchVerify

Given all the group members’ public keys(pk1, ..., pkd) =
(v1, ..., vd), all the d matching responses(www1, ...,wwwd), and
their ring signatures(σσσ1, ...,σσσd), whereσσσi = (σi,1, ..., σi,d),
the stranger

1) Computeshl = H(wwwl) ∈ G1, for all l ∈ [1, d].
2) Generatesd random number(λ1, ..., λd) ∈ Zd

p .
3) Verifies

e(

d
∏

l=1

hλl

l , g2)
?
=

d
∏

i=1

e(

d
∏

l=1

σλl

l,i, vi). (7)

If the equation holds, then all the matching responses are
valid. Otherwise, they are not all valid.

Note that batch verification will fail if only one invalid
matching response exists. To further detect a small number
of invalid ones among all the responses, so the valid ones can

still pass verification, we can leveragebinary search[9] during
batch verification. More specifically, when batch verification
fails, the stranger further divides the set of all the matching
responses into two halves, and rechecks each half using batch
verification. If one half passes, all the matching responsesin
this half are valid. Otherwise, two sub halves of this half will
be further rechecked until all the invalid ones are found.

D. Higher Privacy Levels

There are two ways to modify the construction of Gmatch,
so that it can achieve even higher privacy levels. First, similar
to the previous work [2], each matching value is computed as
wi,j = Enc(τi,jP (ai,j)) instead ofwi,j = Enc(τi,jP (ai,j))+
ai,j . Then, when the decryption result is0, it means that there
is a matched attribute in the group. However, the stranger
cannot determine which particular attribute in his profile is
matched to this attribute.

Second, instead of signing the matching responsewwwi, each
group member signs each matching valuewi,j ∈ wwwi one by
one using ring signatures, and sends each matching value
separately to the stranger. Then, the stranger believes that
every matching value is correct and signed by a group member,
but cannot distinguish whether two different matching values
are from the same group member. Further, the stranger cannot
tell whether two different matched attributes are from the same
group member. However, to achieve this higher privacy level,
each group member has to operatem ring-signing operations
instead of only one ring-signing operation, and the stranger
also needs to verifym× d ring signatures in total, which will
increase the computation cost of the entire scheme.

V. SECURITY ANALYSIS

In this section, we show that Gmatch is able to achieve the
privacy properties we defined in Section II.

Theorem 1: Assuming that the additive homomorphic en-
cryption is semantically secure, Gmatch achievesstranger’s
attributes privacy .

Proof: In Gmatch, group memberPi obtains k + 1
encrypted coefficients of polynomialP (x) computed by addi-
tive homomorphic encryption algorithmEnc. If the additive
homomorphic encryptionEnc is semantically secure [8], it
is computational infeasible for the group member to derive
any plaintext when given only its corresponding ciphertext
and public encryption keypks. Because Paillier cryptosys-
tem, which we use in Gmatch, is semantically secure. Then,
given encrypted coefficients{Enc(α0), . . . ,Enc(αk)} and
public encryption keypks, group memberPi cannot learn
{α0, . . . , αk} without the stranger’s private keysks. Further,
group memberPi is not able to reconstruct the polynomial
P (x) and compute all thek roots ofP (x). Therefore, all the
k attributes in stranger’ profile are not revealed to any group
member, stranger’s attributes privacy is achieved.

Theorem 2: Assuming parameterτi,j for matching value
wi,j is random, Gmatch achievesgroup members’ attributes
privacy.
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Proof: According to Equation (5), the decryption result
of matching valuewi,j can be described as follows:

ai,j + τi,j · P (ai,j) =

{

ai,j , if P (ai,j) = 0
random, if P (ai,j) 6= 0

(8)

Clearly, whenai,j is a matched attribute, it is a root of poly-
nomial P (x), then we haveP (ai,j) = 0, and the decryption
result isai,j . When ai,j is an unmatched attribute, ifτi,j is
a random number, we haveP (ai,j) 6= 0, and the decryption
result is a random value. Therefore, what the stranger obtains
after decryption is either an attribute in his profile or a random
value that does not disclose any unmatched attribute in any
group member’s profile.

Theorem 3: Assuming each matching response is signed
by ring signatures, then Gmatch achievesexact matching
information privacy with probability 1 − 1

d! , whered is the
size of the group.

Proof: Due to the properties of ring signatures in BGLS
[4], when verifying a matching response, the stranger is
convinced that this matching response is signed by a group
member but cannot distinguish which particular member it
is from. The stranger can successfully distinguish that a
matching response belongs to a particular group member with
a probability of 1/d. Since the total number of matching
responses received by the stranger isd, the total probability
that the stranger successfully discloses the exact matching
information between himself and every group member is1

d! .
Therefore, Gmatch can achieve exact matching information
privacy with probability1− 1

d! .
As we analyzed in Theorem 2, during the group match-

ing, unmatched attributes in group members’ profiles are not
disclosed to the stranger. However, by honestly following the
group matching, the stranger can still obtain more information
than allowed by performing all zero polynomial attacks [1].
More specifically, the stranger sets allk + 1 coefficients of
polynomial P (x) as zeros. Under this type of attacks, the
computation result ofP (ai,j) is always zero, which makes
the random numberτi,j useless. Then, all the decryption
results of matching values are attributes from one of group
members’ profiles. In this case, the stranger is able to learnall
the attributes in all group members’ profiles. Making matters
worse, because the stranger only sends the encrypted coeffi-
cients to each group member, and the encryption algorithm
is probabilistic, group members cannot check whether those
coefficients are all zeros or not. To prevent this type of attacks,
we set one of thek + 1 coefficients as1, and is sent to
group members without encryption. Similar methods can also
be found in [1] [10].

VI. PERFORMANCE

We now evaluate the efficiency of Gmatch in experiments
by using the PBC library. All the experiments are tested on
a 2.26 GHz Linux system. For the ease of implementation,
we assumeG1 = G2. The elliptic curve we used is an MNT
curve with a base field size of 159 bits. The length of each
element ofG1 is |p| = 160 bits, and the length of an element

of GT is 1024 bits. An encrypted coefficient underEnc is an
element ofZn, where|n| = 2048 bits.

1) Efficiency of Gmatch:As we can see from Fig. 4(a),
Fig. 5(a) and Fig. 6(a), the efficiency of group matching
can be significantly improved by utilizing batch verification.
More specifically, when the size of users’ profiles are fixed
in Fig. 6(a), the rum time of Gmatch without batch verifica-
tion exponentially increases with the total number of group
members, while the one with batch verification only increases
linearly with the group size.

0 20 40 60 80 100
k: size of the stranger's profile

0

50

100

150

200

T
o
ta

l 
ru

n
 t

im
e
 (

s)

m=10,d=100

Gmatch

Batch

(a) Run time at strangerS.

0 20 40 60 80 100
k: size of the stranger's profile

1.20
1.25
1.30
1.35
1.40
1.45
1.50
1.55
1.60

T
o
ta

l 
ru

n
 t

im
e
 (

s)

m=10, d=100

Gmatch

(b) Run time at group memberPi.

Fig. 4. Impact ofk on the run time, wherem = 10 andd = 100
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Fig. 5. Impact ofm on the run time, wherek = 10 andd = 100
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Fig. 6. Impact ofd on the run time, wherem = 10 andk = 10

The efficiency of group matching at each group member are
illustrated in Fig. 4(b), Fig. 5(b) and Fig. 6(b). The run time
at each group member in Gmatch is greatly increasing with
the size of each group member’s profile, but hardly affected
by the size of the stranger’s profile or the size of the group.

2) Efficiency of Batch Verification with Invalid Matching
Responses:We now evaluate the performance of batch verifi-
cation under different numbers of invalid matching responses.
Clearly, the increasing number of invalid responses will reduce
the efficiency of batch verification. In this experiment, we set
the total number of matching responsesd = 100 and assume it
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always requires theworst-casealgorithm to detect invalid ones
from all the matching responses. As shown in Fig. 7, when
less than10% of all the matching responses are invalid, batch
verification is still efficient than verifying them separately.
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Fig. 7. Comparison on verification time between batch verification and one-
by-one verification whered = 100.

VII. R ELATED WORK

A. Two-party private matching

Freedmanet al. [2] proposed a private matching scheme,
which allows a client and a server compute the set intersection
with their own private sets. During private matching, the client
only obtains the set intersection while the server does not know
any matching result. Agrawalet al. [6] introduced a private
matching scheme between two databases using commutative
encryptions. Hazay and Lindell [7] exploited pseudo random
functions to evaluate set intersection. In [11], Dachman-Soled
et al. exploited polynomial evaluations to compute the set
intersection between two parties, and also leveraged shamir
secret sharing and cut-and-choose protocol to improve effi-
ciency. Recent work in [12] introduced an authorized private
set intersection (APSI) based on blind RSA signatures. In
APSI, each element in the client’s set must be authorized by
some mutually trusted authority.

B. Multi-party private matching

Kissner and Song [13] proposed a multi-party private match-
ing scheme to compute the union, intersection and element
reduction operations for multiple sets. However, this scheme
requires a group decryption among multiple entities, which
is impractical between the stranger and group members in
social networks. Yeet al. [14] extended previous scheme to a
distributed scenario with multiple servers. The dataset ofthe
original server is shared by several sub-servers using(t, w)-
shamir secret sharing. Therefore, anyt−1 or fewer sub-servers
cannot discover the dataset of the original server. Sanget
al. [15] improved the efficiency of private matching among
multiple parties by exploiting an extraN × N nonsingular
matrix, whereN is the total number of entities. Li and Wu [10]
proposed a private multi-party set intersection scheme based
on the two-dimensional verifiable secret sharing scheme.

C. Private matching in social networks

FindU [1] focuses on finding thebest matcheduser from the
group in mobile social networks. Yanget al. [16] introduced

E-SmallTalker, which allows users to privately match other
people in mobile social networks using the iterative bloom
filter (IBF) protocol.

VIII. C ONCLUSION

In this paper, we proposed Gmatch, a secure and privacy-
preserving group matching in social networks. With Gmatch,
the stranger can successfully collect group matching infor-
mation while the private information of group members are
preserved. Our experimental results show that Gmatch can
efficiently compute correct group matching information with
batch verification.
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