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For over two decades, video streaming over the Internet has received a substantial amount of attention from both academia
and industry. Starting from the design of transport protocols for streaming video, research interests have later shifted to the
peer-to-peer paradigm of designing streaming protocols at the application layer. More recent research has focused on building
more practical and scalable systems, using Dynamic Adaptive Streaming over HTTP. In this article, we provide a retrospective
view of the research results over the past two decades, with a focus on peer-to-peer streaming protocols and the effects of cloud
computing and social media.
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1. INTRODUCTION

Driven by an insatiate appetite for bandwidth in the Internet, advances in media compression tech-
nologies, and accelerating user demand, video streaming over the Internet has quickly risen to become
a mainstream “killer” application over the past two decades. Since the very early stages of the Inter-
net [Forgie 1979], it has always been the belief that videos should be streamed to the users over the
network: a user can begin playing a video segment before the entire video has been transmitted. This
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is more preferred and fundamentally different from having to wait for a download to complete before
playback. As a result of this preference, video streaming has received a substantial amount of research
attention in the past two decades, from both academia and industry.

In this article, we seek to go back in the time machine and present a retrospective view of the history
of Internet video streaming by covering its main milestones in the past two decades of research and
development. Following the chronological order, we present three stages of research development on
Internet video streaming.

Client-server video streaming. During the 1990s and early 2000s, research attention mostly focused
on the design and implementation of new streaming protocols, such as the design of the Real-time
Transport Protocol (RTP) specifically for streaming media. The initial set of streaming protocols were
incorporated by the media players, which were used to receive video streams from the streaming
servers over the Internet.

Peer-to-peer video streaming. To scale up to an ever increasing number of users, peer-to-peer (P2P)
video streaming has been studied extensively in the past decade and has widely been applied to both
live and on-demand video streaming. The design of P2P streaming protocols was based on the philos-
ophy that end hosts, called peers, were able to serve as both clients and servers, as opposed to the
traditional client-server design where end hosts were only able to consume video. Real-world systems,
such as PPLive, succeeded to serve thousands of video streams to millions of users, while consuming a
modest amount of bandwidth at streaming servers.

HTTP video streaming over the cloud. To use P2P streaming protocols, users were required to down-
load and install dedicated applications that implemented these protocols. However, it is much more
convenient for users to stream videos directly over the Web using a standard Internet Web browser,
without the need to download and install third-party applications. With HTTP video streaming, a video
stream is divided into a sequence of small chunks that can be downloaded using HTTP. Due to the con-
venience of using the standard HTTP protocol, HTTP streaming has been widely used in the industry,
with streaming servers hosted by cloud computing platforms. As a result, we are now witnessing a
migration to cloud computing and social media as the predominant means to host and share video
streams.

The remainder of this article is organized correspondingly as three main sections. In Section 2, we
present important results from the early stages of research on Internet video streaming. In Section 3,
we discuss the use of the peer-to-peer design philosophy to make video streaming scalable, and present
a small number of representative works. In Section 4, we focus on the migration to HTTP streaming,
as well as the effects of cloud computing and online social networks on video streaming. Finally, we
conclude the article with a summary of the lessons learned in the past two decades of research in
Section 5.

2. INTERNET VIDEO STREAMING USING THE CLIENT-SERVER ARCHITECTURE

The development of video compression technologies in the 1980s and the growth and popularity of
the Internet in the 1990s have motivated the concept of streaming videos over the Internet to a large
number of clients. For much of the 1990s, research in both academia and industry focused on the
design and implementation of new protocols for Internet video streaming from dedicated streaming
servers. Built on top of the Internet Protocol (IP), these new video streaming protocols were designed
to support Quality of Service (QoS) efficiently over the best-effort Internet. In this section, we present
a small number of key milestones to show how traditional client-server video streaming protocols have
evolved in the first decade, before the advent of peer-to-peer (P2P) video streaming. While we are not
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able to cover all the important research results in this section, there exist excellent tutorial papers in
the literature on video streaming protocols in the early stages of research [Cleary 1995; Aurrecoechea
et al. 1998].

2.1 Transport Protocols for Video Streaming

In the early 1990s, resource reservation protocols for achieving Quality of Service (QoS) over the Inter-
net, such as RSVP [Zhang et al. 1993], were superseded by new and simpler transport protocols that
did not depend on any means to reserve bandwidth in the best-effort Internet. To detect packet loss and
compensate jitter during transmissions over an IP network, the Real-time Transport Protocol (RTP)
was proposed for end-to-end real-time transfer of stream data. RTP was designed with two fundamen-
tal principles: application-layer framing (i.e., framing for video data should be performed properly by
the application layer) and integrated layer processing (i.e., integrating multiple layers into one to al-
low efficient cooperation) [Schulzrinne et al. 1996]. Based on the User Datagram Protocol (UDP), RTP
defined a standardized packet format for delivering video over IP and was designed for end-to-end
real-time transfer of stream data. The RTP Control Protocol (RTCP), also based on UDP, was designed
to monitor transmission statistics and QoS, and to achieve synchronization across multiple streams.
Important commercial and open-source products, such as QuickTime, have supported RTP. RTP has
also been adopted by 3GPP, which has been incorporated in nearly all mobile devices.

As new transport protocols became critically important for Internet video streaming, the Internet
Engineering Task Force (IETF) standardized the RTP/RTCP/RTSP protocol suite [Schulzrinne et al.
1996,1998], designed specifically for Internet video streaming. Beyond RTP and RTCP, the Real Time
Streaming Protocol (RTSP) [Schulzrinne et al. 1998] in the protocol suite was designed to create and
maintain video sessions and to provide VCR-style control functionality, enabling users to pause, re-
sume, or seek in video streams, just like local playback. RTSP is an example of session control protocols,
similar to the Session Initiation Protocol (SIP) that was later designed [Rosenberg et al. 2002]. Session
control protocols have since played an important role in the management of active sessions, even in
recent protocols in the context of 3D immersive environments [Nahrstedt et al. 2011], where research
progress has been made on session management protocols in 3D tele-immersive systems [Baldino et al.
2011].

2.2 Rate Control and Rate Shaping

To support video streaming over the Internet, it is believed that transport protocols should be designed
to meet real-time video delivery needs, by maximizing the video quality in the presence of packet loss.
Bursty packet losses have a devastating effect on the video quality, and they are typically caused
by network congestion. To support smooth video streaming sessions, rate control and rate shaping
protocols [Floyd et al. 2000; Jacobs and Eleftheriadis 1998] were proposed to minimize the possibility
of network congestion, by matching the rate of the video stream to the available network bandwidth.
Rate control was a technique designed to determine the sending rate of a video stream based on the
estimated available bandwidth in the network. Traditional rate control schemes may be classified into
three categories [Wu et al. 2001]: source-based, receiver-based, and hybrid rate control. The objective of
rate shaping was to match the streaming rate to the target bandwidth [Jacobs and Eleftheriadis 1998],
and it was required for source-based rate control, as a stored video is precompressed at a rate that may
not match the available bandwidth in the network. There were many types of rate shapers, such as the
codec filter, frame-dropping filter, layer-dropping filter, frequency filter, and re-quantization filter [Wu
et al. 2001]. In the late 1990s and early 2000s, SureStream was proposed and became part of a product
line, called G2, from Real Networks. SureStream created multiple encodings of each content, so that a
client may choose one of the available qualities, and was even capable of switching between encodings
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during playback [Thomas 1998]. Zhang et al. [2001] studied the problem of rate adaptation according
to the estimated network bandwidth, using each video’s rate distortion function under various network
conditions.

2.3 Error Control

Due to the best effort nature of the Internet, packet loss is inevitable, thereby having a significant
impact on the perceptual quality of video streams. Error control [Wang and Zhu 1998] was proposed
to ensure a smooth video streaming experience to the users, even with the presence of packet losses.
A large number of error control mechanisms have been proposed in the first decade of research, which
can be loosely organized into the following categories.

—Forward Error Correction (FEC). The idea of FEC was to add redundant information so that the
original message could be reconstructed in the presence of packet loss [Albanese et al. 1996]. Bolot
and Turletti [1996] proposed using error control mechanisms based on FEC in video streaming and
evaluated its benefits. Based on the type of redundant information to be added, FEC schemes can
take the forms of channel coding, source coding, and joint source/channel coding.

—Error-Resilient Encoding. The objective of error-resilient encoding was to improve the robustness
of compressed video to packet losses. The standardized error-resilient encoding schemes included
resynchronization marking, data partitioning, and data recovery [Wang et al. 2000]. However, these
approaches were designed for error-prone environments, like wireless channels, and were not appli-
cable in the context of the Internet. For video streaming over the Internet, the boundary of a packet
has already provided a synchronization point in the variable-length coded bit-stream at the receiver
side.

—Error Concealment. Error concealment was a technique in which an error in video delivery was re-
placed by synthetic content, often interpolated from other parts of the signal. It can be executed
by the source (i.e., forward error concealment), by the receiver (i.e., error concealment by postpro-
cessing), and by both the source and receiver (i.e., interactive error concealment) to improve the
robustness of the compressed video before packet loss actually happens [Wang and Zhu 1998].

—Delay-Constrained Retransmission. Retransmission is usually dismissed as a method to recover lost
packets in real-time video, since a retransmitted packet may miss its playback time. However, if the
one-way delay is relatively short with respect to the maximum allowable delay, a retransmission-
based approach (called delay-constrained retransmission) may still be a viable option for error con-
trol [Podolsky et al. 1999].

2.4 Proxy Caching

In the early days of video streaming, both the number of videos and the number of users were small.
Videos could be served by a single server, which in many cases not only stored the videos but also
uploaded them to the users. Such an architecture quickly became infeasible when more and more
videos were made available online. An important technique for improving the scalability and reducing
the latency was proxy caching, which was based on the observation that different clients will request
many of the same videos.

While proxy caching was widely used in Web content distribution, video caching had a number of
different focuses. On one hand, since the content of a video object was rarely updated, management
issues, such as cache consistency and coherence, were less critical in video caching. On the other hand,
given the high resource requirement of videos, effective management of proxy cache resources (i.e.,
disk space, disk I/O, and network I/O) became more challenging. Sen et al. [1999] demonstrated that
by only caching the prefixes of videos could a large amount of videos be served by a few megabytes
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of buffer space at the proxy storage. To improve caching efficiency, Hua et al. analytically studied the
storage requirement in the context of on-demand streaming [Hua and Sheu 1997; Hua et al. 1998].
Yu et al. [2003] proposed a QoS-adaptive proxy caching scheme for video streaming over the Internet,
considering the heterogeneous network conditions and video characteristics. Other effective partial
caching strategies, such as sliding-interval caching, segment caching, and rate-split caching, have also
been proposed in the literature [Liu and Xu 2004].

2.5 |IP Multicast for Video Streaming

The ever increasing user population also called for a revisit to the original one-to-one Internet com-
munication paradigm. Maintaining unicast sessions for each user quickly became infeasible as the
number of users scaled up. Many emerging applications, including Internet TV and live event broad-
cast, required the support for video multicast, that is, simultaneously delivering a video stream to a
large number of clients.

IP multicast [Deering and Cheriton 1990] was proposed as an extension to IP unicast, with the
objective of providing efficient multipoint packet delivery. Given that the network topology was best
known in the network layer, multicast routing at this layer was also the most efficient. IP multicast
retained the semantics of IP and allowed users to dynamically join or leave multicast groups.

In the early 1990s, end-to-end adaptation schemes were mainly sender-driven, where the sender ad-
justed its transmission rate according to some feedback from a single receiver. This did not work well
for multicasting to heterogenous receivers without a common target rate. One solution was stream
replication, which could be viewed as a trade-off between single-rate multicast and multiple point-
to-point connections [Kim and Ammar 2001]. Its feasibility was well justified in a typical multicast
environment where the bandwidth of receivers usually followed some clustered distribution. As a re-
sult, a limited number of streams could be used to match these clusters to achieve a reasonably good
performance.

With advances in scalable or cumulative layered video coding, McCanne et al. [1996] proposed the
first practical Receiver-driven Layered Multicast (RLM) protocol. RLM mapped different layers of
a scalable video source to distinct multicast groups and let the receivers independently decide the
number of layers to subscribe, so that they are commensurate with their individual capacities. Amir
et al. [1995] proposed an architecture where video transmission can be decomposed into multiple ses-
sions with different bandwidth requirements using an application-level gateway. Li and Nahrstedt
[1999] proposed to design a middleware framework for adapting the quality of applications based on
application-specific needs. Ooi et al. [2000] further studied the multicast heterogeneous network envi-
ronment and designed a programmable gateway system for processing videos at strategic locations in
the network to reduce the bandwidth requirements.

2.6 Application-Layer Multicast for Video Streaming

Today, the scope and reach of IP multicast remain limited, as many Internet Service Providers (ISPs)
simply block or disable IP multicast due to various security and economic concerns [Diot et al. 2000].
The idea of using the application layer for multicast, called application-layer multicast (ALM), was
proposed around 2000 [Sheu et al. 1997; Chu et al. 2000]. Though both application-layer and IP mul-
ticast require intermediate nodes in the network topology to support the replication of data packets,
it was much easier to implement multicast at the application layer on end hosts, as opposed to the
network layer at switches and routers [Hosseini et al. 2007]. Cui et al. [2004] showed that with re-
spect to bandwidth consumption on the backbone network, the benefit introduced by application-layer
multicast overshadowed the topological inefficiency introduced.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 1s, Article 33, Publication date: October 2013.



33:6 o B. Lietal.

Source

Fig. 1. Application-layer multicast with a single tree. Fig. 2. Application-layer multicast with multiple trees.

Chu et al. [2000] showed that application-layer multicast performed reasonably well compared to IP
multicast, incurring a comparable delay and a reasonable amount of bandwidth penalty. In the initial
proposals, a single multicast tree was constructed for each multicast session. For example, Overcast
[Jannotti et al. 2000] attempted to organize a bandwidth-efficient tree by letting peers join near the
root and then migrating them down the tree to a position according to bandwidth availability. Tran
et al. [2003] proposed ZIGZAG in which the video server distributes chunks to many clients by orga-
nizing them into an appropriate tree rooted at the server. The advantage of such a design, shown in
Figure 1, was its simplicity.

The design of a single multicast tree suffered from a number of problems. First, such a design may
not be fair to all the peers. As we can easily see from Figure 1, when the tree was formed, some peers
were chosen to be interior nodes that must contribute their upload bandwidth to support others, while
others were leaf nodes that were not required to contribute any upload bandwidth. Even if fairness was
not a concern, the multicast rate that a child node can enjoy was restricted by the upload bandwidth
available at its parent. In case the parent node left the multicast session, the children would be left in
the cold, waiting for a new parent.

To improve fairness in application-layer multicast, it has been proposed since 2003 that streams can
be split to multiple slices and distributed across a forest of multiple interior-node-disjoint multicast
trees [Castro et al. 2003], or a mesh overlay on top of a tree [Kosti¢ et al. 2003]. Figure 2 illustrates an
example of multicasting with two trees, constructed with the intention that a majority of nodes that
are interior nodes in one tree will be leaf nodes in the other tree. By distributing the responsibility of
contributing uploading bandwidth to most of the peers in the multicast session, the fairness problem
is mitigated, yet the robustness problem remains to be solved.

3. PEER-TO-PEER VIDEO STREAMING

In contrast to the client-server streaming model where the consumption and supply of resources (e.g.,
bandwidth) is always decoupled, peer-to-peer streaming evolves in which peers are both suppliers and
consumers of resources. The peer-to-peer design philosophy takes advantage of the ability of partici-
pating end hosts, or peers, in a multicast group to contribute their uplink bandwidth. The peer-to-peer
design has two major advantages. First, it does not require the support from the underlying network
infrastructure, and as a result, it is cost-effective and easy to be deployed. Second, in the peer-to-peer
design, a peer is not only downloading a video stream, but also uploading it to other peers watching the
same program. As a result, it has the potential to scale up with the group size, as a stronger demand
also generates more suppliers.

In retrospect, application-layer multicast and peer-to-peer share the same design philosophy.
Application-layer multicast is largely push-based, in that video streams are being pushed to the
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Fig. 3. An illustration of neighbors in the pull-based Fig. 4. Buffer snapshots of (a) BitTorrent and (b) CoolStreaming,
peer-to-peer streaming system with A being the source. where shaded segments are available in the buffer.

receivers along one or more trees. As the tree topologies have been constructed before the stream-
ing session starts, each receiver in the trees only needs to forward the video stream to its downstream
receivers, with very minimal delays due to such forwarding.

The design philosophy in BitTorrent has converged with academic solutions in application-layer mul-
ticast, and a new generation of pull-based peer-to-peer streaming protocols on random mesh topologies
has emerged, independently proposed in Chainsaw [Pai et al. 2005] and CoolStreaming [Zhang et al.
2005b]. In such protocols, peers exchange information with their neighbors periodically about what
video segments each of them has in their buffers, and a missing video segment must be explicitly
requested and transferred from one of the neighbors who has it. In comparison, application-layer mul-
ticast based on multicast trees adopts a more rigid design [Venkataraman et al. 2006; Magharei et al.
20071, in that the structure of each tree needs to be actively managed as peers join and leave the ses-
sion. As a result, pull-based protocols are much simpler to design and more amenable to real-world
implementations [Zhang et al. 2007].

On the flip side of the coin, the main challenge of designing pull-based protocols is the timing con-
straints that new streaming protocols must observe: if video segments do not arrive in time, they are
not useful when it comes to the time of playing them back. In this section, we first present an example
of pull-based streaming protocols and then illustrate how network coding is able to help address the
challenges of timing constraints in pull-based streaming.

3.1 Traditional Pull-Based P2P Video Streaming

CoolStreaming [Zhang et al. 2005b] was one of the first real-world implementations of pull-based peer-
to-peer streaming protocols. In CoolStreaming, a peer maintains a partial view of other peers as its
neighbors and schedules the transmission of video segments by sending outgoing requests to its neigh-
bors. In CoolStreaming, a video stream is divided into segments of a uniform length, and the availabil-
ity of active segments in the buffer of a peer is represented by a buffer map. Each peer continuously
exchange its buffer map with its neighbors and then uses a scheduling algorithm to determine which
segment is to be fetched from which neighbor accordingly. An example of its neighboring relationship
is shown in Figure 3.

As shown in Figure 4, a dynamic sliding window of segments over time needs to be distributed,
unlike a fixed number of data blocks in file sharing (such as BitTorrent). As the sliding window moves
forward in the stream over time, blocks are to be received in approximately the same sequence as they
are played back, and out-of-order delivery can only occur within the confines of the sliding window.
Each of the blocks are distributed using a gossip protocol in a random mesh topology of neighbors
(an example of which has been shown in Figure 3), requiring peers to pull blocks from one another.
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Since all participating peers are roughly synchronized with respect to their points of playback, they
are able to periodically exchange the states of their respective buffers in the sliding window. Based
on the knowledge of block availability in each other’s sliding windows, a peer sends requests to its
neighbors in order to pull blocks it has yet to receive.

One of the main advantages of the pull-based design is its resilience to failures. A peer can depart
either gracefully or accidentally due to an unexpected failure. In either case, the departure can be
easily detected after a period of idle time, and an affected peer can quickly react by requesting the
missing segments from its other neighbors.

Fundamentally, setting up and maintaining trees in application-layer multicast is similar to setting
up a connection in a telephone network: states of parent-child relationships are established so that
data blocks can be transmitted without explicit requests taking place. In contrast, the distribution
of data blocks in a pull-based protocol is similar to gossiping in a social setting. Following such a
gossiping philosophy to distribute each of the data blocks to all the peers in the multicast session,
early peer-to-peer video streaming systems, such as CoolStreaming, have motivated a large number
of production-quality real-world implementations in the industry, several of which has become core
technologies in start-up companies that specialized in live media streaming, including PPLive [Huang
et al. 2008] and PPStream [Silverston and Fourmaux 2007].

Even though the gossiping philosophy incurs some delays in live streaming systems due to explicit
requests and periodic information exchanges, its most salient advantage is its simplicity in design
and implementation. If the current sliding window of the media stream to be distributed is divided
into small media blocks, they will flow through the entire network wherever there exists idle upload
bandwidth that can be tapped into.

3.2 P2P Video Streaming with Network Coding

Traditional pull-based P2P streaming is based on the periodic exchange of buffer availability maps,
and its communication overhead cannot be overlooked. Intuitively, since the sliding window at a peer
advances itself over time, buffer availability maps need to be exchanged as frequently as needed,
which may lead to a substantial amount of overhead. To mitigate such an overhead, most practical live
streaming systems choose to exchange buffer states less frequently. An analytical study [Feng et al.
2009], however, has attributed the performance gap between practical systems and their theoretically
optimal performance to the lack of timely exchanges of buffer states.

Since 2005, the use of network coding has emerged as a potential remedy to these challenges in
peer-to-peer video streaming systems [Liu et al. 2010; Park et al. 2006]. Network coding, first proposed
in the information theory community in 2000 [Ahlswede et al. 2000], recognized the ability to code
at intermediate network nodes in a communication session, in addition to the ability to forward and
to replicate incoming packets. In contrast, traditional multicast only recognized the ability to forward
and to replicate packets. In 2003, Ho et al. [2003] further proposed the concept of random network
coding, where a network node transmits on each of its outgoing links a linear combination of incoming
packets over a finite field, with randomly chosen coding coefficients.

It is natural to conceive a simple but new design of peer-to-peer video streaming systems in which
peers, as end hosts, are able to forward, replicate, and code incoming video data blocks. But will the use
of network coding improve the performance, as compared to traditional pull-based P2P streaming? In
particular, would the use of random network coding be able to mitigate the problem of the communica-
tion overhead? Wang and Li [2007] have raised such a question and proposed a new protocol called R?
that used random network coding to substantially improve the performance of live streaming systems.

R? divides the content of the media stream in a sliding window into generations, each of which
is further divided into m video blocks. With the introduction of generations in R2, we can afford to
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Fig. 5. Peer-to-peer live streaming with the use of random network coding: multiple existing peers are able to collaborate and
serve coded blocks within the same generation to a new peer joining the session, minimizing its initial buffer delay.

design parameter settings so that a video block is much smaller than its counterpart in traditional live
streaming systems based on random gossiping. This is due to the fact that buffer states only need to
be exchanged at the granularity of a generation (one bit to represent each generation), rather than a
block. With the same amount of communication overhead to exchange buffer states, the size of a single
block can be much smaller in R?. When a peer serves a generation s to its downstream target peer p, it
linearly encodes all the video blocks it has received so far from s using random coefficients in GF(28),
and then transmits the coded block to p. Since each peer buffers coded blocks it has received so far, it
is able to linearly combine those from the same generation using random coefficients.

Since live streaming systems have timing requirements during playback, R? uses random push
instead of pull to transmit data: each peer randomly selects a small number of downstream peers.
When serving a chosen downstream peer, it then randomly selects a generation to code within, among
those that the downstream peer has not yet completely received. If generations closer to the point of
playback have not been completely received, they are given a higher priority, as they are more urgent.

There are three clear advantages brought forth by the use of random network coding in R?. First,
it greatly simplifies protocol design. Since coded blocks within a generation are equally useful, a peer
only needs to blindly push coded blocks in the same generation till the downstream peer has obtained
a sufficient number of them to decode. This eliminates the need of sending explicit requests to pull
missing blocks, and saves the communication overhead associated with these requests. Second, R?
induces much less overhead involved in buffer state exchanges due to a smaller number of generations
in the sliding window. Finally, R? allows for “perfect collaboration” among multiple upstream peers
when serving a downstream peer. Shown in Figure 5, as a new peer joins the session, multiple existing
peers are able to collaborate and push fresh coded blocks in the first one or two generations after the
playback point, so that the rate of accumulating blocks in these generations is only limited by the new
peer’s available downlink bandwidth.

4. HTTP VIDEO STREAMING OVER THE CLOUD AND SOCIAL MEDIA

Though P2P has proven to be highly efficient in video delivery, it is not convenient to regular users. In
order to cache video contents being played back and to serve other peers with P2P streaming, users are
usually required to install standalone applications and to keep some TCP or UDP ports open through
NAT and firewalls. This is not as convenient as the turn-key solution of using a standard Web browser
to watch video streams.

After WebRTC was developed [Bergkvist et al. 2012], these issues seemed to have been resolved;
however, due to its limited deployment by browsers, a solution to stream videos over HT'TP has seen
a substantial amount of industry support. In this section, we present HTTP streaming, which was
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proposed even before P2P video streaming was largely deployed [Carmel et al. 2002], but has been
used more widely only recently.

4.1 Dynamic Adaptive Streaming over HTTP

4.1.1 HTTP Streaming from Content Distribution Networks. The rapid growth of HTTP streaming
is partly due to the extensive support from content distribution networks (CDN) [Peng 2004]. CDNs
deploy servers in multiple geographically diverse locations, distributed over multiple ISPs [Vakali
and Pallis 2003]. CDNs allow users to stream videos from a server close to them—user requests are
redirected to the best available server based on either geographical proximity or server load. Since
today’s CDNs are mainly designed and optimized to serve web contents [Pallis and Vakali 2006], HTTP
video streaming can be regarded as downloading video segments progressively from Web servers via
the HTTP protocol so that clients that support HTTP can seek to arbitrary positions in the media
stream by performing byte range requests to the web server [Fielding et al. 1999].

As a result, CDNs can be effectively used for high-quality TV content [Cahill and Sreenan 2004].
Adhikari et al. [2012] discovered that Netflix, the leading on-demand Internet video streaming
provider, accounts for 29.7% of the peak downstream traffic in U.S. and it employs a mix of datacenters
and CDNs for video content distribution. Watson [2011] has studied the Dynamic Adaptive Streaming
over HTTP (DASH) framework used by Netflix, which is the largest DASH-based streaming provider
in the world.

HTTP video streaming overcomes the challenges of convenience in P2P streaming systems, as it
requires only a standard Web browser to view video streams and does not need to keep nonstandard
TCP or UDP ports open though firewalls and NAT traversals. It works by breaking the overall video
stream into a sequence of small HTTP-based file downloads. Users progressively download these small
files, while a specific file is being played. Today, HTTP video streaming has been widely adopted by the
industry, as major video streaming solutions, such as Netflix, YouTube, and Hulu, all resort to HT'TP
to stream their videos to the users.

4.1.2 Research Problems with DASH. Due to the best-effort nature of streaming videos over the
Internet, Dynamic Adaptive Streaming over HT'TP (DASH) has been proposed to adapt the streaming
rates from Web servers. DASH was developed in 2010 [MPEG 2010] and has become a new standard
in 2011 [Stockhammer 2011] to enable high-quality streaming of media content over the Internet,
delivered from conventional HTTP Web servers. It works by breaking encoded content with multiple
rates into small segments such that a client may continuously adjust its requests according to the
estimates of local bandwidth availability. DASH can be represented by the following features.

—Segmentation. In DASH, a video component is encoded and divided in multiple segments, with the
initialization segments containing the required information for initializing the media decoder, as
well as the media segments containing the video data.

—Media Presentation Description. The media presentation description (MPD) describes how the seg-
ments form a video presentation [MPEG 2010]. Using the MPD, the clients request the segments for
smooth playback and adjust bitrates or other attributes according to bandwidth estimates.

—Codec Independence. DASH is codec agnostic, and its prime container is the MP4 and MPEG-TS. It
also allows seamless adoption of the upcoming improved HEVC video codec (i.e., H265).

Despite its advantages and features, the increasing popularity of deploying DASH has also led to a
number of research problems.

—Rate Adaptation Components. DASH only defines the segmentation and the file description, and
leaves rate adaptation for either the client or the server to implement. There exists a number of
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solutions along these lines in the recent literature. Clients can utilize multipath and multiserver
approaches to receive video segments [Gouache et al. 2011]. In such receiver-driven approaches, the
protocols are usually implemented at the application layer [Havey et al. 2012]. On the other hand,
servers are also able to adaptively change the bitrate for its clients, based on the perception of the
client download speed and server load. De Cicco et al. [2011] used a feedback mechanism to allow
clients to communicate with a server, which performs the rate adaptation.

—Rate Adaptation Strategies. Rate adaptation strategies determine how different versions of seg-
ments are received by users to achieve the objectives, including streaming stability, fairness, and
high quality. Akhshabi et al. [2011] have compared the bitrate adaptation of some popular DASH
client implementations and observed that these implementations were either too aggressive or too
conservative, causing unfairness and inefficiency. Jiang et al. [2012] have proposed to jointly take
efficiency, fairness, and stability into consideration when adjusting the video bitrate.

—User Quality Experience. Though rate adaptation is highly correlated with the users’ video quality
experience in DASH streaming, such a correlation may require a more detailed study. Cranley et al.
[2006] demonstrated the dynamic nature of user perception with adapting video streaming. In the
context of DASH, Mok et al. [2012] have studied the user experience and observe that users prefer
a gradual quality change between the best and worst quality levels, instead of abrupt switching. To
better guide the design of rate adaptation strategies, a good metric for evaluating the user experience
is still an open area of research [Song et al. 2011].

4.2 Video Streaming from the Cloud

As HTTP streaming is increasingly employed by major content providers, more and more video stream-
ing systems have been built and deployed with HTTP streaming. As a result, the sharing of user
generated content (UGC) (e.g., YouTube) has fundamentally changed the video streaming landscape,
where regular users dynamically generate the video contents to be uploaded to the servers.

The highly centralized design of datacenters had catapulted the popularity of cloud computing since
2008, and had embraced a design philosophy that is exactly the opposite to that used by peer-to-peer
systems. Attracted by the abundant networking resources in the cloud and the on-demand “pay-as-
you-go” pricing model, an increasing number of video streaming services have been hosted by the
cloud computing platforms. For example, Netflix, one of the leading video streaming service providers,
has been reported to resort to the cloud service [Cockcroft 2011]. As a result, the design of network
topologies in datacenters has quickly become an active area of research, drawing significant research
attention since 2008. Zhu et al. [2011] introduced the main concepts of multimedia cloud computing
and presented a cloud-based video streaming framework. Such a paradigm shift to cloud computing,
in the industry and academia alike, has superseded the research interests in peer-to-peer streaming.

Benefits of Cloud-Based Streaming. A cloud computing platform offers reliable, elastic, and cost-
effective resource provisioning, and has changed the way of enabling scalable and dynamic network
services. There have been pioneering studies on demand-driven resource provisioning, as well as initial
attempts that leverage cloud services to support media streaming applications, from both industry
(e.g., Netflix) and academia [Wu et al. 2011; Huang et al. 2011]. Cloud providers have made it feasible
for video-on-demand (VoD) providers, such as Netflix, to pay by GB for bandwidth resources, leading
to long-term cost savings. Over the short term, a cloud-based video streaming service is able to handle
bursty demands very well.

Limitations of Cloud-Based Streaming. There are, however, a number of critical theoretical and
practical challenges to be addressed when migrating video streaming services to the cloud. First,
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Fig. 6. A framework for cloud-based video streaming.

servers in the cloud have diverse capacities and lease prices; and the billing cycle for the lease can-
not be arbitrarily short either—Amazon EC2 leases its virtual machines by the hour. As such, when
being leased, the virtual machines and their corresponding charges cannot be simply terminated at
any time. For a newly leased virtual machine, it takes a substantial amount of time (a few minutes)
to instantiate it.! Therefore, a VoD provider needs to accurately predict its future demand so that an
adequate number of new virtual machines can be leased to meet such demands with minimized costs
[Niu et al. 2012].

Figure 6 shows a generic framework that facilitates the migration of existing live media streaming
services to a cloud-based solution [Wang et al. 2012a]. The framework, consisting of a cloud layer and
user layer, adaptively leases and adjusts cloud servers in a fine granularity to accommodate temporal
and spatial dynamics of user demands. Upon receiving a user’s subscription request, the cloud layer
redirects this user to a selected cloud server, with the re-direction being transparent to the user. Given
time-varying user demands, more server resources will be leased upon an increase in demand during
peak times, or otherwise terminated. The cloud layer can serve a storage- and bandwidth-buffer for
the user layer and can mitigate the impact of demand dynamics.

These challenges are further complicated given the global heterogeneous distributions of the cloud
servers and that of the user demands. Today’s live streaming applications have become highly global-
ized, with subscribers from all over the world. Such globalization makes user behavior and demands
even more diverse and dynamic [Wang et al. 2012a]. The impact of such globalized demand patterns
cannot be addressed for a single-datacenter-based cloud, and a geographically distributed cloud service
is naturally a better solution.

Thttp://aws.amazon.com/ec2/.
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Fig. 7. A sample graph of YouTube videos and their links.

4.3 The Effects of User-Generated and Social Media

Compared to the Internet a decade ago, networked services in the Web 2.0 era focus more on the user
experience, user participation, and interaction with rich media. The users are now actively engaged to
be part of a social ecosystem, rather than passively receiving video streams.

When it comes to streaming services, one prominent example reflecting this change is YouTube. Es-
tablished in 2005, it is now serving well over 4 billion views a day, with most of the contents being
generated by users. The sheer number of UGC objects is orders of magnitude higher than that of tra-
ditional movies or TV programs and evolves rapidly. As of March 2013 [Statistics 2013], every second,
1.2 hours worth of video is uploaded on YouTube by users around the world, attracting almost
140 views for every person in the world on average. Earlier industry insiders estimated that YouTube
spent over $1 million a day to pay for its server bandwidth. This has defeated any effort towards
increasing server capacity and improving the user experience. Saxena et al. have revealed that the
average service delay of YouTube is nearly 6.5 seconds, which is much longer than the other measured
sites [2008].

While peer-to-peer mechanisms would be a candidate for scaling the video streaming system, the
huge number of videos with a highly skewed popularity implies that many of the peer-to-peer overlays
will be too small to function well. Moreover, user-generated videos are generally short (70% are shorter
than 1 minute, even though YouTube has relaxed the length limit [Cheng et al. 2012]), implying that an
overlay will suffer from an extremely high churn rate. These factors together make existing per-video
based overlay design suboptimal, if not entirely inapplicable.

On the other hand, the UGC nature introduces new social relations and interactions among videos
and users. In particular, there are interesting relations among the YouTube videos: the links to re-
lated videos generated by uploader’s choices form a small-world network, as illustrated in Figure 7
[Cheng et al. 2012]. This suggests that the videos have strong correlations with each other. A user of-
ten quickly loads another related video when finishing the previous one. An earlier work that explores
such relationships is NetTube [Cheng and Liu 2009], which introduces an upper-layer overlay on top
of the swarms of individual videos. In the upper-layer overlay, given a peer, neighborhood relations are
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established among all the swarms that contain this peer. This conceptual relation facilitates a peer to
quickly locate the potential suppliers for the next video and enable a smooth transition. The relations
also enable effective pre-fetching of videos. While the repository of short videos is large, the next video
in YouTube is most likely confined by the related list of the current video. This list in general includes
20 videos at most. Therefore, even if the number of pre-fetched videos is small, the hit ratio of the
next video could still be quite high. After multiple rounds, the rate can easily reach over 90% given the
small world of the videos [Cheng and Liu 2009].

Migrating YouTube-like UGC services to the cloud is nontrivial, either. A unique and critical step
here is to partition the contents and assign them to a number of cloud servers. Not only do the loads
of cloud servers have to be balanced, as in traditional standalone videos, but also the relationships
among the videos and users have to be preserved so as to promote access locality. There are some
existing works trying to solve this problem [Pujol et al. 2010; Cheng and Liu 2011], yet an all-around
optimal solution remains to be developed.

The latest development of general social network applications, in particular, Facebook and Twitter,
have further changed the information distribution landscape and even people’s daily life. These online
Social Networking Services (SNS) directly connect people through cascaded relations, and information
thus spreads much faster and more extensively than through conventional Web portals or newsgroup
services.

Such word-of-mouth spreading [Rodrigues et al. 2011] has also drastically expanded the ways of
discovering the videos beyond traditional Web browsing and searching. There have been pioneering
studies on information propagation over generic networks and, more recently, over social networks
[Budak et al. 2011]. Yet their focuses have been largely on the conventional text or image objects
and on their stationary coverage among users. The sheer and ever increasing data volume, the broad
coverage, and the long access durations of video objects have presented more significant challenges
than other types of objects to the SNS management, and to that of video sharing sites. A measurement
study [Broxton et al. 2010] based on YouTube data has shown that, between April 2009 and March
2010, 25% of views on YouTube come from social sharing. Despite recent work towards this direction
[Wang et al. 2012b], the characteristics of such requests from OSNs have yet to be comprehensively
measured at large scales.

5. LESSONS LEARNED AND CONCLUDING REMARKS

In retrospect, the rise of research interests in video streaming systems was largely fueled by user de-
mand and the increasingly abundant availability of bandwidth in the Internet, reflected both in the
uplink bandwidth at end users (motivating the peer-to-peer philosophy), and in the downlink band-
width at the servers in the cloud datacenters and in Content Distribution Networks (CDNs).

The popularity of the peer-to-peer design paradigm originated from its advantage of a clean slate
starting point, in that it was not confined by any legacy protocols in the Internet. Due to the freedom of
designing overlay topologies, the peer-to-peer paradigm was amenable to both theoretical and practical
treatments, from modeling, analyses, to implementation and deployment. There have been technical
challenges that have received heated discussions from researchers in this context. One example is
on the tree-based structured versus pull-based structureless overlays. Both have shown their success
in practical deployment, yet neither completely overcomes the challenges from a dynamic peer-to-
peer environment. The selling point for pull-based systems is their simplicity, but they suffer from a
latency-overhead trade-off with the exchange of buffer maps [Venkataraman et al. 2006; Zhang et al.
2005a]. A tree-based system does not suffer from this trade-off but has to face the inherent instability,
maintenance overhead, and bandwidth underutilization. There have been attempts toward a hybrid
design [Venkataraman et al. 2006; Wang et al. 2007]. It has been shown that most of the data blocks
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delivered through a pull-based mesh overlay essentially follow a specific tree structure or a small set
of trees, mostly of stable peers [Wang et al. 2007]. As such, while maintaining a priori topology for all
the peers is costly, optimizing the organization for a relatively stable core subset—with others being
organized through a mesh—could simultaneously achieve high efficiency with low overhead and delay.

The hybrid design is seemingly a compromise; yet we believe that the root cause is the intrinsic
heterogeneity of the Internet and its end users, which inevitably renders any one-fits-all solution to be
suboptimal. For peer-to-peer streaming, its high scalability and low cost for server cluster deployment
have made it feasible and promising. On the other hand, it faces significant challenges from a wide
spectrum of issues, including incentives, fairness, availability, and stability. Consider an extreme flash
crowd scenario of a popular concert broadcast that attracts one million users; if these users arrive
within the the first 100 seconds of the concert, the peak arrival rate will be 10,000 peers per second. If
the video quality is not good enough for the initial period, a user is more likely to leave the system. This
not only represents a failure of the system to provide service to this particular user but also generates
a peer departure event, thus introducing more churn in the system [Sripanidkulchai et al. 2004]. This
problem can hardly be addressed by the peer-to-peer design paradigm alone, and external assistance,
such as Content Distribution Networks or cloud datacenters, is a must.

Whether the peer-to-peer design philosophy will thrive or survive hinges upon the crucial judg-
ment of whether its advantages outweigh its drawbacks, being so vulnerable to flash crowds and high
turnover rates. The potential copyright infringement as well as the lack of a clear business model for
both the content providers and the users are also critical concerns. Measurement studies have shown
that in some peer-to-peer video streaming systems, a small set of peers are requested to contribute 10
to 35 times more uploading bandwidth than downloading bandwidth, while many others are free-riders
that contribute nearly zero. Such incentive mechanisms as tit-for-tat for peer-to-peer file download do
not seem to work well for real-time streaming data. With recent downward trends in storage and
bandwidth resource pricing, the momentum of the pendulum is swinging to the opposite side for peer-
to-peer. According to Stoica [2010], bandwidth pricing of Content Distribution Networks was observed
to be dropping quickly every year, from 40 cents per GB in 2006 to less than 5 cents per GB in 2010.
As a result, the streaming cost per hour had decreased 15%—35%, to less than 3 cents per hour in
2010. The consequence of these observations was dramatically reduced distribution costs for content
providers. For example, for paid content that is usually priced at $0.99 per episode, the distribution
cost is less than 3% of the provider’s total cost; for subscription-based premium content, it only costs
$1.60 per month to stream content to a user watching two hours per day! On the other hand, the emer-
gence of such ad-based business models have boosted the importance of video quality. There is a crucial
interplay between video quality and user engagement [Dobrian et al. 2011], and what contributes to
the majority of a content provider’s revenue is the income from ad-supported premium content. The
cost per thousand of ad impressions (CPM) for premium content has reached $20—$40, with a single ad
covering the cost of an entire hour of streaming. As a consequence, content providers, with an objective
of generating more revenue, start caring more about the visual quality and stability of their streaming
service to maximize user engagement. Half of the Internet video providers are offering or planning to
offer targeted or interactive advertising, and they continue to adopt social networking, growing to 41%
by last year [Infonetics 2011b].

By leasing storage and bandwidth resources to leading VoD providers, such as Netflix, cloud com-
puting has emerged as the potential winner by purchasing resources at wholesale and selling them to
cloud users at retail. HTTP/DASH streaming powered by cloud computing and datacenters, coupled
with the social media and social effects due to the highly-available online social network services, have
recently enjoyed a meteoric rise in popularity, attracting an enthusiastic level of research attention
just like peer-to-peer systems did a decade ago.
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Looking back over the past two decades, Internet video has greatly changed the landscape of content
distribution. It has largely swept out optical discs as the storage and distribution media in the movie
industry. It is currently reshaping the TV broadcast industry with an ever-accelerating speed. Over
the next five years, SNL Kagan [SNL 2011] has predicted that the global IPTV subscriber base will
grow at a 9.1% compounded annual growth rate, reaching 100.5 million homes by 2017, equivalent to
an 11.5% pay TV subscriber share. IPTV service revenues are expected to reach $41.2 billion by 2017,
accounting for 13.9% of global total pay TV revenues. Today, most IPTV service providers use dedicated
transport networks, providing quality access of digital TV programs from a head-end device to end
users’ dedicated set-top boxes (STBs). The Hybrid Broadcast Broadband TV (HbbTV) consortium of
industrial pioneers, including SES, Humax, Philips, and etc, is currently promoting and establishing
an open standard for hybrid set-top boxes that receive broadcast and broadband digital television
and multimedia applications with a single-user interface. Our belief is that network convergence is
inevitable and the global Internet will be the vehicle for the further expansion of IPTV services. As a
matter of fact, in the UK. BBC’s iPlayer has been successfully broadcasting high-quality TV programs
to both TV subscribers with STBs and public Internet users with Adobe Flashplayer since 2007; in the
U.S. CNBC, Bloomberg Television and Showtime use live-streaming services from BitGravity’s CDN
to stream live television to paid subscribers using a standard http protocol. China, the largest IPTV
market by subscribers (12.6 million) to date, is probably the most vigorous market seeing an entire
range of technologies from peer-to-peer, to CDN, and to cloud computing, and these technologies are
competing with each other and with dedicated IPTV networks.

Our argument also follows the changing viewing habits. In 2006, an Accenture’s survey on IPTV
[Accenture 2006] showed that compelling TV content is the core foundation of any IPTV proposition,
which remains true today; yet it also indicated that consumers overwhelmingly preferred to watch
television on a television set, and the least favored devices on which to watch television are mobile
phones. The latest survey by Infonetics [2011a], however, has shown that IPTV services are getting
highly personalized, integrated, portable, and on-demand. The results have confirmed an important
observation that is fairly obvious now: most service providers are moving beyond basic video offerings
toward richer user experiences. To date, 63% of IPTV service providers plan to support multi-screen
viewing across TVs, PCs, tablets, and smartphones [Infonetics 2011b]. Meanwhile, multiview and mul-
tistreaming are being developed, in which multiple video streams from the same event are delivered to
a user, who will be able to switch between camera views [Arefin et al. 2012]. This is a real recognition
by service providers of what is happening in homes across the planet—that families are voraciously
and simultaneously consuming streamed high-definition video on devices other than the traditional
set-top box/TV couple.

The young adults and teenagers, otherwise known as the Internet generation, have long been hooked
to their desktops or laptops, interacting, socializing, and generating their own video content. The new
generation of smart mobile devices, mostly notably based on iOS, Android, and Windows Phone plat-
forms, all of which emerged only in the recent five years, are driving the revolution further. The role
of the Internet itself has evolved from the original use as a communication tool to provide easier and
faster access to an infinite supply of information. Despite its rapidly expanding bandwidth, its narrow
waist of the TCP/IP protocol suite, which used to be the key to its success, has fundamental design mis-
matches when providing real-time multimedia streaming services with a massive volume of data and
a massive audience. Research efforts in the past two decades have largely focused on accommodating
and remedying these mismatches. While a discussion of the future Internet architecture is beyond the
scope of this article, we have seen exciting future development towards data- or information-centric
networks [Ghodsi et al. 2011] that would turn to reality in the next two decades, with the hope of
making truly scalable, robust, personalized, and social video streaming to networked users a reality.
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