
Bellini: Ferrying Application Traffic Flows
through Geo-distributed Datacenters in the Cloud

Zimu Liu1, Yuan Feng2, and Baochun Li1

1Department of Electrical and Computer Engineering, University of Toronto
2Department of Computing, Hong Kong Polytechnic University

Abstract—Thanks to the “on-demand” nature of cloud comput-
ing, a large number of applications have been recently migrated
to the cloud. To take full advantage of superior connectivities
between geo-distributed datacenters, application traffic can be
“ferried” through the cloud to provide better service and user
experience. However, implementing and deploying such inter-
datacenter protocols for various applications, such as messaging,
streaming and conferencing, are not without challenges, due to
complex requirements of applications and unique characteristics
of datacenters. In order to simplify the design and implementa-
tion of new inter-datacenter protocols, we design and implement
a new system framework, called Bellini, in this paper. Bellini
provides customizable elements shared by the new category of
inter-datacenter protocols, including a variety of transport proto-
cols, routing policies, and rate allocation strategies. Bellini is also
optimized to perform well in virtual machines, utilizing available
resources efficiently. With case studies on video conferencing and
messaging, we demonstrate the benefits of Bellini when it comes
to designing and evaluating new inter-datacenter protocols to
serve the needs of cloud-based applications.

I. INTRODUCTION

The proliferation of cloud computing using geographically
dispersed datacenters has clearly demonstrated its advantages
in cost reduction and scalability. Moving traditional applica-
tions to the cloud allows the convenience of “pay-as-you-go”
when it comes to using resources on demand, enabling these
applications to scale up naturally to meet surging user demand.
With applications deployed in datacenters, it is common to see
that application traffic flows are relayed by satellite datacen-
ters to backbone datacenters. Chen et al. showed that inter-
datacenter traffic now accounts for a significant amount of the
total traffic through the datacenter egress router [1].

On the other hand, with the ubiquitous use of smart mobile
devices for streaming and interactive conferencing sessions,
geo-distributed datacenters in the cloud can be used to offer
better performance to a wide variety of mobile applications.
Empirical studies reveal that links between geo-distributed
datacenters often offer higher capacities than peer-to-peer
connections between two end hosts over the public Internet [2].
Therefore, it is conceivable to design new application-layer
protocols that take advantage of higher link capacities in inter-
datacenter networks, operated by cloud service providers.

The objective of these new inter-datacenter protocols is to
“ferry” application traffic flows via a collection of datacenter-
to-datacenter paths in the inter-datacenter network, while each
of these paths may involve multiple hops. With these new

protocols, packets in multiple streaming or conferencing ses-
sions can be routed through a high-capacity inter-datacenter
network, as if they are traveling around the world in chartered
private flights with minimal congestion, rather than cruise
ships with long lines waiting for embarkation.

Yet, research is still in its infancy when it comes to how
new inter-datacenter protocols can be designed to serve the
needs of a variety of streaming, conferencing, and messaging
applications, with many research questions remaining open.
A major roadblock is that such research requires real-world
implementations of new protocol designs, which can be readily
deployed in actual datacenters. Such implementations are
complex and time-consuming to be designed and realized.

In this paper, we present a new system framework, called
Bellini, that identifies and incorporates common system el-
ements that are needed by prototype implementations of a
class of inter-datacenter protocols. Bellini makes it much more
convenient to develop, test, and evaluate new protocols in a
realistic cloud platform with geo-distributed datacenters, such
as Amazon EC2. From the ground up, Bellini is designed
to efficiently utilize resources in VMs: it uses asynchronous
I/O to process incoming and outgoing packets, with high
performance in terms of packet processing rates. In order to
offer better flexibility so that it can be used by different inter-
datacenter protocols, Bellini supports one-to-one, one-to-many,
and many-to-many communication, and traffic can be split into
multiple paths, each transmitted over multiple relays. Design
patterns are also widely used, making it convenient to plug in
customized protocols and components.

We evaluate the flexibility and performance of Bellini
through two case studies: video messaging and multi-party
conferencing. Our case studies span a range of protocols for
routing application traffic flows, including choices of transport
protocols, routing policies, and flow assignment strategies. We
show how different design choices can be plugged into Bellini
and tested in datacenters with ease. Our experimental results,
obtained by running Bellini instances in actual datacenters in
the Amazon EC2 cloud, demonstrate the performance we are
able to achieve with the framework.

The remainder of this paper is organized as follows. In
Sec. II, we discuss the design objectives of the Bellini system
framework. In Sec. III, we present the design and implemen-
tation in detail. In Sec. IV, we study two cases and show how
Bellini is used to facilitate their development and evaluation.

We conclude the paper with a discussion of related work
(Sec. V) and concluding remarks (Sec. VI).

II. DESIGN OBJECTIVES

Intuitively, streaming, messaging, and conferencing applica-
tions are typically bandwidth-demanding and delay sensitive,
and they may benefit most from high-capacity inter-datacenter
networks. Since Bellini is designed to facilitate the rapid
prototyping of inter-datacenter protocols, we wish to identify
shared elements of these applications and implement them in
a system framework. Let’s first examine three representative
class of applications:
. On-demand streaming applications. In these applications,

a video stream is typically transmitted in an application-
layer multicast session, from a media source server to a
group of subscribing users.

. Messaging applications. A media message, such as a
video/audio clip, is to be shared from one user to another.
Though these applications are best-effort in nature and are
not as sensitive on delays as streaming, messages will
need to be received with a reasonably slow delay, since
users may interact in these applications.

. Multi-party video conferencing applications. A group of
users, each serves as a video source, are involved in a
conferencing session and transmits her/his video stream
to other participants. Due to the all-to-all broadcasting
nature of these conferencing sessions, they can be poten-
tially bandwidth-demanding and delay-sensitive.

Considering a variety of requirements on application per-
formance, different inter-datacenter protocols will need to be
designed to cater to the needs of different applications. Despite
their different requirements, application traffic will be sent via
the inter-datacenter network, with solutions to two problems.
At a high level, they need to manage datacenter nodes so that
they can be used to “ferry” traffic flows belonging to a number
of concurrent sessions, each involving a group of participants.
At a low level, packets are to be transmitted from their sources
to the inter-datacenter network, and then relayed to their final
destinations, possibly via a number of datacenter-to-datacenter
paths, with multiple hops along each path.

Bellini is designed to provide solutions to these problems,
as they constitute the shared elements in inter-datacenter
protocols. To get started, we first look at the traffic patterns: the
traffic can be as simple as a source-destination pair involving
two datacenters, or as complex as involving multiple sources
and destinations. To organize these traffic flows Bellini adopts
a two-tier hierarchy, as shown in Fig. 1: A conference consists
of several nodes participating in the same event, such as the
sharing of a media message; a conference further contains
one or multiple concurrent sessions, each of which has a
specific source and a set of destinations. Taking a multi-
party video conference as an example, all participants form
a conference, and video broadcasting streams originated from
each participant are considered as sessions.

Once a session has been established, how should packets be
transmitted? Governed by an inter-datacenter protocol, packets

a

b

c

d

Conference #1
(conf. creator: a)

Session #1-1
�src: a; dst: b/c/d)

Session #1-2
�src: c; dst: b/d)

other concurrent
sessions ...

...

other concurrent
conferences

a

b

c

d

a

b

c

d

Fig. 1. Organizing traffic flows in Bellini with a two-tier hierarchy.

could be sent to one or multiple destination datacenters, using
reliable or unreliable connections, through direct paths, multi-
hop relay paths, or multicast paths, depending on different
application scenarios. For some delay-sensitive applications, it
is also possible that a packet is copied and transmitted through
different paths to the same destination. In order to embrace a
wide variety of routing policies, including unicast, multicast,
multi-hop transmission, and multi-path transmission, Bellini is
designed to provide a flexible packet router at the application
layer, allowing traffic flows to be sent to an arbitrary node and
forwarded by any intermediate nodes. Furthermore, in order
to fully utilize inter-datacenter capacities, it is also common
to see that rates of different traffic flows are dynamically
adjusted. With different application requirements considered,
it is critical to support both flexible routing policies and
adjustable flow assignment, such that Bellini can easily support
a wide variety of applications with different requirements and
objectives.

We now elaborate on two main objectives as our system
framework is being designed: flexibility and performance.

Flexibility. Designed as a system framework that supports
a variety of cloud-based applications, Bellini should be highly
flexible, so that it helps to simplify inter-datacenter protocol
prototyping for networking researchers. To be specific, Bellini
should allow inter-datacenter protocols to customize their own
routing policies and rate assignment strategies, based on cer-
tain requirements for different applications. To facilitate such
customization, an easy-to-use interface must be provided for
the applications to activate available components and configure
parameters. To achieve this goal, Bellini supports both API-
based control and file-based configuration.

With respect to the API-based control, Bellini provides a
set of programming interfaces for applications to monitor
and control every detail of the underlying transmissions in
an online fashion, including decisions on which path should
packets be sent through, or which alternative path should be
used if congestion is detected. In practice, Bellini is controlled
through three abstract classes: IConference, IRouting
and IFlowAssignment. By deriving C++ classes from
these abstract classes, a new inter-datacenter protocol can
easily create conferences, and change routing policies and flow
assignment strategies. Taking customized routing in Fig. 2 as
an example, the MyRouting class derived from IRouting
instructs Bellini to periodically load application-specific rout-
ing decisions for each session. When necessary, the application
can also reload routing policies of a given session.

class MyRouting : protected IRouting {
/* app-specific variables and functions */

};

RoutingList MyRouting::routingDecisions(const ConfIDType confId,
const SessionIDType sessionId) { // declared in IRouting

RoutingList rlist;
/* app-specific routing algorithms */
rlist.addRoutingEntry(/* a routing policy */);
// ...
return rlist;

}

{ /* initialization */
MyRouting myRouting(/* init. values */);
gBellini.registerRoutingObj(myRouting);
// ...

}

{ /* when certain event occurs */
/* make some adjustments */
myRouting.adjustSomething(/* ... */);
/* force Bellini to call IRouting::routingDecisions and

 reload routing polices */
gBellini.reloadSessionPolicies(confID, sessionId);

}

Fig. 2. Implementation of customized routing algorithms using the
IRouting programming interface.

In addition to API-based control, Bellini also supports the
JSON-based configuration file. By writing a human-readable
lightweight JSON file, Bellini allows users to config a wide
variety of settings, such as routing policies and rate assignment
strategies for individual conferences and sessions, without
writing any C++ code. Fig. 3(a) lists a segment of a Bellini
configuration file, showing a transmission session from the
source node 1 in conference 1. We can see that there exist two
routing policies from the source (node 1) to destinations (node
2 and 4), with their respective flow rate assignments. Following
such a mix of multi-hop multi-path policies, packets will
be transmitted, forwarded, and duplicated through designated
paths, as shown in Fig. 3(b).

// ...
"ConferenceList": [
{
 "ConferenceID": 1,
 "StartTime": "2012-09-02 14:22:31 UTC",
 "Participants": [1,2,3,4],
 "SessionList": [
 {
 "SessionID": 1,
 "Protocol": TCP,
 "SrcNode": 1, /* Source Node ID */
 "DstNodes": [2,4], /* Destinations */
 "AverageRate": 80, /* 80 KB/s */
 "MaxBurstSize": 150 /* 150 KB at burst */
 "RoutingList": [
 { "FlowWeight": 25, "PathList": ["2,4","2,3,4"] },
 { "FlowWeight": 75, "PathList": ["2","3,4"] },
 //...

(a) A segment of the Bellini configuration file.

1

2

3

4
80 KB/s

60 KB/s

20 KB/s

80 KB/s

20 KB/s

1

2

3

4
20 KB/s
(25%)

1

2

3

4
60 KB/s
(75%)

Source
Rate=80 KB/s

BurstSize=150 KB

(b) The corresponding traffic flows.

Fig. 3. An example of configuring Bellini for multi-hop multi-path trans-
mission session from node 1 to node 2 and 4.

Performance. Since Bellini is designed to support the imple-
mentation of real-world applications to be deployed in actual
cloud datacenters, it should be implemented with performance
and scalability in mind. In particular, it is critical for Bellini to
achieve the best possible performance, such that all resources
purchased in datacenter are utilized efficiently. Furthermore,
when the system scales up, e.g., multiple nodes are forming
multiple concurrent transmission sessions, which is the norm
in reality (e.g., in the video streaming scenario), Bellini should
be capable of handling a large number of concurrent sessions,
each maintaining a high transmission rate.

In order to achieve this goal, the design of Bellini is
guided by the asynchronous event-driven paradigm, in which
incoming events (e.g., packet reception) are processed by
corresponding handlers, and subsequent events may be gener-
ated for further processing. The advantage of the event-driven
paradigm is two-fold. First, the event-driven engine incurs less
CPU and memory overhead. When the workload concurrency
of a cloud node is high, the event-driven model only uses
a fixed number of threads, while the “thread-per-connection”
model will create a large amount of working threads, leading
to excessive overhead of thread context switching. Second,
with the help of the event-driven engine, components inside
Bellini can be loosely coupled. As long as event handlers from
different components are appropriately registered for specific
events, event-based workflows are naturally formed and then
components can work seamlessly.

III. IMPLEMENTATION

With our design objectives in mind, we have designed
and implemented Bellini from scratch, using C++ and the
Boost asio asynchronous I/O library. To realize new cloud-
based applications, inter-datacenter protocols can be easily
built on the Bellini framework, and then deployed in VMs
at geo-distributed datacenters. Using the interface provided
by Bellini, application instances (henceforth called nodes) can
establish or join one or more conferences and corresponding
transmission sessions. Within a conference, Bellini assists
applications to send and receive data to/from instances running
on other VMs. For different application traffic, combinations
of routing policies and rate control strategies can be specified
and executed. In order to thoroughly monitor the performance
of the entire system, instrumentation units are embedded in
Bellini. We now present further details on the design and
implementation of the Bellini framework.

Conference and Session Management
Bellini manages all active transmissions using the afore-

mentioned conference-session hierarchy. When a conference
is initiated by the application, using either a configuration file
or the IConference programming interface, Bellini node
will create an object that corresponds to this conference, and
register it in a conference listing server. With the conference
created, the application can further establish multiple con-
current sessions for actual transmissions among participating
nodes. Within a session, data from the session source will

be sent to designated destinations for storage or playback. In
order to maximize its flexibility, Bellini allows the application
to customize each individual session, by specifying its routing
policies and flow assignment strategies in the interface.

If a node in the conference serves as the source of a session,
Bellini retrieves content from the application running on this
node, and then supply data packets to underlying transmission
components. In reality, content may be files (e.g., digital
photographs and asynchronous messages) or streams (e.g.,
conferencing videos and on-demand videos). Furthermore,
streams can be further categorized into two groups: adaptive
bitrate streams, which detects the available bandwidth and ad-
justs the stream quality accordingly, and non-adaptive streams.
Since Bellini is designed to support different applications, we
accommodate all three types of content, by properly converting
them into a flow of data packets to be transmitted. In addition
to using actual content from applications, Bellini also provides
a flexible data generator that can emulate different types
of data sources, which facilitates the testing of new inter-
datacenter protocols.

Flexible Source Routing
When designing routing support in Bellini, an important

design choice is whether the routing decision should be made
by the source node of a session in a centralized fashion,
or by individual nodes in the session in a distributed man-
ner. Different from traditional peer-to-peer routing protocols,
Bellini is designed to transmit traffic flows through datacenters.
Since the total number of datacenters is relatively small, only
a limited number of nodes are involved in inter-datacenter
protocols. In that sense, the complexity of centralized routing
algorithms can be reduced in the cloud. Furthermore, thanks
to the excellent connectivity and abundant bandwidth between
datacenter VMs, running a centralized algorithm becomes
much more convenient. Taking full advantage of the cloud
infrastructure, Bellini adopts the source routing paradigm to
achieve better performance.

With source routing chosen, we have design flexible struc-
tures in Bellini to describe different routing policies, including
direct, multicast, multi-hop, and multi-path transmissions. As
shown in Fig. 4, the RoutingInfo to be embedded in the
packet header consists of one or more segments of Pathlet
data, with each Pathlet segment representing a next-hop
node. Within a Pathlet segment, the next-hop node is
identified by a unique node identifier (Node ID), and the data
in RoutingInfo indicate how this next-hop node should
handle the packet. Since several destinations may exist in a
session, we reserve the highest bit in the Node ID to identify
whether the next-hop is one of the destinations. With the help
of these two data structures, we can easily specify different
routing policies in Bellini. Table I lists a few examples of
policies and corresponding representations in Bellini.

Adjustable Flow Assignment
In addition to source routing, another important feature of

Bellini is the support of customizable flow assignment, where

Pathlet :=

required, 4 bytes
required, 2 bytes

optional, variable length

Pathlet
Length

Next-hop Node ID
& Destination Flag RoutingInfo

Pathlet Length (in bytes)

RoutingInfo := Pathlet-1
(required)

Pathlet-2
(optional) … Pathlet-N

(optional)

Fig. 4. The RoutingInfo and Pathlet structures for source routing.

TABLE I
EXAMPLES OF REPRESENTATIVE ROUTING POLICIES REPRESENTED BY

THE ROUTINGINFO DATA STRUCTURE.

Routing Category Representation

1 2
s d Direct 6 21

2

1 3
s d

Multi-hop 12 2 6 3
10

2
1

5

4

3s
dd

dd

Multicast 6 3 6 4 6 518 2
1 1 1 1

41
2

3s d
Multi-path 6 412 36 412 2

0 1 10

Note: “s” indicates a source; “d” indicates a destination; the numbers in
boxes represent values in fields of RoutingInfo and Pathlet structures;
the superscript number in the Node ID field indicates the highest bit.

data packets from a session can be split into several flows,
and each flow is transmitted at a given rate following a spe-
cific routing policy. As discussed previously, Bellini executes
routing decisions at the granularity of individual packets in
the source node, by embedding the routing information in
each packet. Such a flexible design allows us to send packets
carrying different RoutingInfo headers, each of which
represents the path of a traffic flow, and then packets will
be naturally split into multiple flows by the dispatcher.

In order to implement flow assignment in each session, we
organize all active flows in the same session as a traffic flow
list at the source node, and each entry in the list represents a
traffic flow and has the corresponding RoutingInfo header
cached. When a packet in a session to be sent, Bellini randomly
choose an entry from this session’s flow list, and embed
the cached routing information into this packet. By allowing
the application to assign customized statistical distribution
to entries, packets will be sent in different flows at given
probabilities, and thus different portions of traffic flows will
be transmitted in a controlled manner. To further enhance the
flexibility of Bellini, an application is able to dynamically
change the flow assignment distribution of each individual
session, by inheriting the IFlowAssignment abstract class.

Supporting Concurrent Conferences and Sessions
Bellini is designed to support cloud-based applications,

and it is the norm to have multiple ongoing conferences
and sessions, when the system scales up. Furthermore, in a
large-scale system, conferences and sessions may start and
end frequently. Hence, it is critically important to efficiently

support concurrent traffic sessions in Bellini’s implementation.
First, the Bellini dispatcher is implemented with confer-

ence/session awareness. For each session, its corresponding
routing and flow assignment decisions will be loaded into a
per-session internal object for speedy access. In this way, each
session can operate separately without affecting each other.
Second, we must think carefully how outgoing packets of
the dispatcher — particularly, packets from different sessions
but to the same next-hop node — should be transmitted, to
support a large number of concurrent sessions. Intuitively, a
solution is to establish separate connections from the local
node to the next-hop node, with each connection used by
one ongoing session. However, such an approach will incur
additional overhead (e.g., handshake and slow-start) when
creating new connection for each session. To ensure system
performance, multiplexed node-to-node connections is adopted
in Bellini, by sending packets designated to the same next-hop
node through the same connection.

In order to implement such an efficient and scalable design,
we create a data feeder object for each next-hop node, and
each data feeder collects packets from the Bellini dispatcher
to be sent to a particular next-hop node. As shown in Fig. 5,
within each data feeder, we maintain a list of per-conference
queues to buffer packets from different conferences, rather
than queueing all packets in a shared buffer. On one hand,
such a design provides the flexibility to balance or prioritize
ongoing conferences in Bellini. As a transmission opportunity
comes, the data feeder can pop a packet from per-conference
queues in a round-robin manner or in a prioritized order speci-
fied by the application. On the other hand, once a conference is
terminated, associated queues can be immediately removed to
eliminate useless packets, instead of scanning shared queues.
It is also worth noting that as multi-hop transmissions are
allowed, queues in an intermediate node may overflow when
the congestion occurs. In such a case, Bellini will notify all
involved nodes so that the application can take proper actions.

Data Feeder for Node 3

Data Feeder for Node 2
Conf. 1

...
Conf. K

2

Conf. 1

...
Conf. K

3

Conf. 1
Session 1-1

...
Session 1-2

Conf. 2
Session 2-1

... D
is

pa
tc

he
r

Conf. 2

Conf. 2

...

...

Fig. 5. An illustration of data feeders in Bellini.

Implementing High-Performance Packet Delivery
With packets queued in data feeders, we are ready to deliver

them to the corresponding next-hop nodes. In out implemen-
tation, Bellini provides high-performance packet delivery to
other running Bellini nodes. Applications can choose different
transport protocols in Bellini, with support for both TCP and
UDP as transport protocols. In order to achieve a reasonable

fairness when UDP and TCP compete for bandwidth, TCP-
friendly rate control (TFRC) is activated in each UDP con-
nection as the flow control algorithm.

With multiplexed transmission, each TCP/UDP connection
to a remote node will be associated with a corresponding
data feeder. Once a transmission opportunity occurs, Bellini
immediately requests a packet from the associated data feeder
and send it out. Meanwhile, Bellini asynchronously waits for
any incoming packets from the network. Upon receiving a
packet, a reception completion handler will be triggered and
the packet will be sent to the dispatcher for further processing.
In addition to data packets, all control packets, such as session
management messages or congestion notifications, are sent
over dedicated connections, to timely manage the Bellini
system.

Network Coding
In recent years, we have observed that random network

coding has been widely used for peer-to-peer transmissions.
With satisfactory performance reported in the literature [3],
Bellini supports random network coding, so that researchers
can simply activate network coding as a component, and then
evaluate its suitability in new inter-datacenter protocols.

As network coding is a rateless erasure code, we decide to
incorporate it with UDP and TFRC in Bellini, to provide an
alternative transmission protocol supporting both error control
and flow control. To be specific, packets to be sent are linearly
combined to produce coded packets, using random coefficients
in GF (28). At a receiving node, the decoding is performed
progressively using the Gauss-Jordan elimination. Any relay
node may also produce coded packets by performing similar
operation on the received coded packets. To provide the best
possible performance when the network coding engine is
enabled, we have included a fully optimized network coding
codec in Bellini. Our accelerated codec is able to conduct
network coding in a parallel manner using SIMD instructions.

Instrumentation and Supporting Scripts
Since Bellini is primarily designed as a real-world deploy-

ment platform to evaluate new inter-datacenter protocols, the
ability to evaluate its runtime performance is a must. We
have implemented instrumentation units in Bellini to closely
monitor various performance metrics, e.g., the TCP/UDP
throughput, per-session packet forwarding rates, and end-to-
end delays. Every 30 seconds, these performance metrics
are reported to the gStatistics object provided in the
interface, so that the application is able to monitor the Bellini
runtime. For the convenience of offline performance analysis,
periodic performance reports are also written to logs.

Last but not the least, Bellini includes an extensive set of
deployment scripts that provides “turn-key” solutions when it
comes to deploying multiple executable instances and config-
uration files to their respective datacenters, launching them for
execution, and collecting logs after they are terminated. Batch
processing scripts have also been provided to automate the de-
ployment of a large number of performance tests (perhaps with

different configuration settings) without human intervention.

IV. CASE STUDIES

We now use two case studies to show how Bellini can
facilitate the implementation and evaluation of new inter-
datacenter protocols. In our case studies, the flexibility and
performance of Bellini are assessed thoroughly.

A. Video Messaging with Minimized Traffic Costs

With increasing uses of messaging applications on mobile
devices, it is conceivable that, not only text, short videos can
also be messaged. And, such messaging is not as sensitive to
end-to-end delays as streaming and conferencing applications.
If videos to be messaged are transmitted over inter-datacenter
networks with high-capacity links, we can focus more on the
operational costs of running such video messaging service.
We discover that percentile-based charging models that are
typically used in inter-datacenter networks may provide further
opportunities to reduce operational costs: if some traffic is
already generated on one link, transmitting less traffic in
subsequent time intervals will be a waste of capital investment.
Therefore, a possible way to reduce costs is to design routing
and flow assignment for traffic flows so that the under-utilized
time intervals are minimized as much as possible.

To achieve this goal, a set of algorithms has been designed
to minimize the cloud operator’s costs on messaging traffic,
by optimally routing flows in an online fashion [4]. As Bellini
is designed to be flexible, using it to build a prototype of
such a video messaging application—possibly using interme-
diate datacenters as relays—is a breeze. By implementing
the new algorithms as C++ objects derived from IRouting
and IFlowAssignment, video traffic across inter-datacenter
links can be split and transmitted along multiple multi-hop
paths. Thanks to such a flexible support of the Bellini frame-
work, the prototype of the video messaging service has no
more than 1, 000 lines of C++ code.

With such a prototype built on Bellini, we use the cloud
deployment scripts to deploy instances of our prototype in
medium VMs in 7 Amazon EC2 datacenters and evaluate the
performance. First, we investigate the relation between the
packet processing rate and the resource usage of Bellini, by
sending an increasing number of randomly generated video
messages. After collecting all the logs, we group performance
reports by 5-min intervals, and then derive the average packet
processing rate and CPU/memory usage within each interval.
As shown in Fig. 6, there exists a strong linear correlation
between the processing rate and the CPU usage, which makes
it possible to estimate Bellini’s performance given the pro-
cessing power of a VM. Such a predictable performance of
Bellini is mainly attributed to the low CPU overhead incurred
by the high-performance event-driven engine. With respect
to the memory usage, we observe that the memory usage is
reasonably low even at a high processing rate, implying that
packets are processed in a timely manner.

We then evaluate the time consumed internally for packet
processing, to verify the effectiveness of online routing and

5 × 1040 2 × 104

70

0
10
20
30
40
50
60

Packet Processing Rate (pkt/s)

C
PU

 U
sa

ge
 (%

)

5 × 1040 2 × 104

15

0

5

10

Packet Processing Rate (pkt/s)

M
em

or
y

U
sa

ge
 (%

)

Fig. 6. Comparisons between the packet processing rate and CPU/memory
usage of Bellini.

flow assignment. Since each packet will be first combined
with a routing header to execute the customized routing and
flow assignment decisions, we plot the CDF of the processing
time consumed on such operations in Fig. 7. It is shown
that the average processing time for each packet is as low
as 1.89 µs and the standard deviation is no more than 0.1 µs.
Recall that all packets, including local packets and incoming
packets from other nodes, will be forwarded to corresponding
next-hop nodes by the dispatcher. Fig. 8 further examines
internal processing times in Bellini’s dispatcher. With an
average of 5.47 µs/packet observed, we can derive that the
total processing time consumed by these two major steps is
around 7.4 µs/packet. These observations reveal that Bellini is
able to achieve excellent performance in real-world settings.

1.7 1.8 1.9 2.0 2.1
Processing Time (microsec/pkt)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

average = 1.89
std. dev. = 0.07

Fig. 7. Processing time consumed
for routing and flow assignment.

5.0 5.2 5.4 5.6 5.8 6.0
Processing Time (microsec/pkt)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
average = 5.47
std. dev. = 0.22

Fig. 8. Processing time consumed
on dispatching packets.

B. Video Conferencing using Inter-Datacenter Networks

Traditionally, multi-party video conferencing protocols are
designed to use a peer-to-peer architecture. However, due
to a lack of bandwidth between nodes over the Internet,
its quality is not satisfactory. Since datacenters in the cloud
are typically connected via dedicated links, it is conceivable
that throughput may be higher by relaying the conferencing
session over the inter-datacenter network. In this case study,
we would like to use Bellini to validate the idea of cloud-based
video conferencing, named Airlift [2]. By delivering live video
conferencing streams via datacenters, Airlift algorithms try to
use network coding and optimal flow control to maximize
the total throughput, without violating end-to-end delay con-
straints. Since Bellini supports network coding assisted multi-
hop transmission, it is trivial to setup the Bellini: after turning
on the network coding engine, Bellini is able to automatically

3

42

1

5 6

(a) Cloud

1

2

3

4

(b) Peer-to-Peer

Fig. 9. Topologies supported by different Bellini configurations, with one
of sessions highlighted. Note that nodes in Toronto, Waterloo, Beijing and
Shanghai are numbered with 1, 2, 3 and 4, respectively; Virginia and Tokyo
datacenters are represented by 5 and 6.

encode packets, forward them through designated paths using
the optimal flow assignment computed by Airlift algorithms,
recode them whenever necessary, and finally decode coded
packets at destinations for playback.

To conduct a preliminary test of Airlift, we first deploy
four Bellini instances as conference participants, in PlanetLab
nodes located in Toronto, Waterloo, Beijing, and Shanghai,
respectively. These four instances forms 4 concurrent sessions
in a conference, with each session corresponding to a video
source at one of participants. As illustrated in Fig. 9(a), we
further deploy two Bellini instances in the Amazon EC2 Vir-
ginia and Tokyo datacenters as relay nodes for this conference.
By analyzing logs produced by instrumentation facilities in
Bellini, we have observed that the throughput can achieve up
to 1.9 Mbps. On the other hand, it is observed that the end-
to-end delay, with an average of 191 ms. For comparisons, we
reconfigure 4 Bellini instances in PlanetLab to execute optimal
peer-to-peer based packet delivery (shown in Fig. 9(b)). The
experiment shows that the achievable throughput is merely
142 kbps with an end-to-end delay of 157 ms on average.

Encouraged by such observations, we deploy Bellini in-
stances to all Amazon EC2 datacenters around the world,
as relays for multiple source-destination pairs of PlanetLab
nodes. By writing different configuration files and running
scripts, all Bellini instances are launched automatically to
conduct various experiments. Table II summarizes the runtime
traces between representative cities in different continents.
Overall, the collected logs show that throughput improvements
are around 3–24 times.

TABLE II
PERFORMANCE TRACES BETWEEN CITIES IN DIFFERENT CONTINENTS.

Cloud / P2P Total throughput End-to-end delay
(Mbps) (msec)

Toronto-Beijing 14.11/4.04 169.8/142.3
Vancouver-Berlin 34.32/1.38 137.2/104.9

Seoul-Rio 20.32/2.32 228.6/203.5

V. RELATED WORK

In the literature, very little effort has been devoted to the
design and implementation of a flexible and high-performance
framework to support inter-datacenter protocols. Before the
era of cloud computing, several peer-to-peer frameworks, such
as PeerSim [5], were designed to simulate or emulate peer-
assisted data transmission protocols. Although these frame-
works can be configured to imitate datacenter networks, they

cannot help researchers to implement, deploy, and evaluate
actual applications in real-world cloud. With respect to appli-
cation packet forwarder, RON [6] was implemented to route
packets in an application-layer overlay network. But, RON
only supports simple multi-hop routing, and cannot split a
session into multiple flows to conduct fine-granularity control.
It also fails to provide a flexible customization interface for
cloud-protocol prototyping. To support cloud-based applica-
tions, very few frameworks were proposed with focus on data
transmission. The SAM framework [7] was proposed solely
for the backup traffic in the cloud.

Different from existing work, Bellini focuses on inter-
datacenter transmission of application traffic flows in the real-
world cloud environment. Designed as a flexible system frame-
work, Bellini helps researchers to simplify the implementation
and evaluation of new protocols that use datacenters in the
cloud. With flexibility as the most important design objective,
essential elements such as routing and flow assignment, are
supported in Bellini, and a wide variety of customizations
can be achieved through the configuration file or the given
programming interfaces with ease.

VI. CONCLUDING REMARKS

This paper presents Bellini, a system framework that is
designed to facilitate the rapid development, cloud deploy-
ment, and instrumentation of a wide range of inter-datacenter
protocols. Governed by the design objective of flexibility,
Bellini supports plugging in customer-tailored routing policies
and flow assignment strategies, in order to meet the needs of
different applications. The implementation of Bellini is fine-
tuned for performance, so that resources in cloud VMs can be
efficiently utilized. Bellini supplies most of the features and
components that are desired by a variety of applications, such
as sharing, conferencing and messaging. Our experiences with
two case studies have shown that, Bellini makes it feasible
to develop and evaluate new protocols using datacenters with
ease and satisfactory performance. We will release Bellini as
an open-source software release so that other researchers may
benefit from the framework.

REFERENCES

[1] Y. Chen, S. Jain, V. Adhikari, Z.-L. Zhang, and K. Xu, “A First Look at
Inter-Data Center Traffic Characteristics via Yahoo! Datasets,” in Proc.
INFOCOM, 2011, pp. 1620–1628.

[2] Y. Feng, B. Li, and B. Li, “Airlift: Video Conferencing as a Cloud
Service using Inter-Datacenter Networks,” in Proc. IEEE International
Conference on Network Protocols (ICNP), 2012.

[3] C. Gkantsidis, J. Miller, and P. Rodriguez, “Comprehensive View of a
Live Network Coding P2P System,” in Proc. IMC, 2006, pp. 177–188.

[4] Y. Feng, B. Li, and B. Li, “Jetway: Minimizing Costs on Inter-Datacenter
Video Traffic,” in Proc. ACM Multimedia, 2012.

[5] A. Montresor and M. Jelasity, “PeerSim: A scalable P2P simulator,” in
Proc. Intl. Conference on Peer-to-Peer (P2P ’09), 2009, pp. 99–100.

[6] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris, “Resilient
Overlay Networks,” in Proc. SOSP, 2001, pp. 131–145.

[7] Y. Tan, H. Jiang, D. Feng, L. Tian, Z. Yan, and G. Zhou, “SAM:
A Semantic-Aware Multi-tiered Source De-duplication Framework for
Cloud Backup,” in Proc. International Conference on Parallel Processing,
2010, pp. 614–623.

