
Experiences with MPEG-4 Multimedia Streaming
Hassan Shojania

ATI Technologies, Inc.
hshojani@ati.com

Baochun Li
Department of Electrical and Computer Engineering

University of Toronto
bli@eecg.toronto.edu

ABSTRACT
With the advent of next-generation multimedia technologies such
as very-low bit rate MPEG-4 codec, multimedia streaming of
high-quality video and audio has become a near-term reality. The
high compression ratio and error resilience offered by the MPEG-
4 standard promise near-term popularity for rich contents and
exceptional quality to consumers over affordable Internet
connections, such as xDSL, cable modem and 3G wireless
networks. Audio and video streaming applications are at the
center of such scenarios; and Quality-of-Service (QoS) support in
such applications is critical to their widespread acceptance.
To the best of our knowledge, there has been no existing open-
source MPEG-4 multimedia streaming applications in the
academic community, which leads to the lack of research results
using MPEG-4 streaming, especially with respect to Quality-of-
Service support. In this work, we have implemented an open-
source MPEG-4 multimedia streaming testbed in IP-based
networks. In this paper, we show our experiences and lessons
learned with such a testbed. First, we describe the algorithms and
solutions used in our implemention testbed, emphasizing several
critical issues. Second, through extensive experiments, we
demonstrate measurements of bandwidth requirements and data
loss for streaming a set of multimedia samples with different bit
rates over UDP, which is ubiquitously available in the TCP/IP
protocol stack on all consumer operating systems. Finally, future
work for further improvements is also discussed.

1. INTRODUCTION
Streaming media is becoming increasingly prominent over
current-generation of broadband IP-based networks. Bandwidth
limitations of previous years are not as stringent as before, and
content-rich high-quality video and audio are gaining popularity
in the form of streamed media. Indeed, high-quality multimedia
applications are one of the first choices for utilizing the increasing
bandwidth, and one of the propelling forces for researching
Quality-of-Service (QoS) issues over the Internet. For example,
streaming delivery of audio and video has become a norm in many
web sites for news and educational purposes.

However, since bandwidth availability to the end user (the last
mile problem) still has severe limitations even with the current
high-end technology such as xDSL and cable modem, such
streaming are still limited to low-quality video and audio, which is
not satisfactory for high-quality home entertainment such video-
on-demand. Part of the reasons is that current generation of

streaming technology are still using the MPEG-1, MPEG-2,
H.261 or a wide range of proprietary codec technologies, which
do not offer the compression ratio required to stream high-quality
(e.g. near-DVD) multimedia over less than 1000Kbps.

Such advances in bandwidth availability are not limited to wired
networks. Third-generation wireless networks are rapidly
approaching reality, also providing bandwidth levels similar to
that of wired networks. In both cases, end-system resources,
especially CPU capabilities, have also advanced in leaps and
bounds. In order to provide acceptably high-quality multimedia
streaming, the only solution is to trade-off more end-system CPU
resources and to stream contents using a different codec that
offers higher compression ratios.

The MPEG-4 standard has achieved a unique position in realizing
such revolutionary advances with respect to delivering high-
quality video and audio to consumers. While most of the current-
generation streaming applications are closed and proprietary, the
emerging MPEG-4 standard has gained increasing acceptance as
the standard for Internet streamed multimedia and has exceptional
potential to offer an alternative, open-source streaming solution.
Among its highlights and features, it offers highly efficient
compression, error resilience, bandwidth scalability ranging from
5Kbits to 20Mbits/second, network and transport protocol
independence, as well as content security and object-based
interactivity. With respect to streaming, its low-bit-rate audio and
video coding capability and its built-in error resilience are
especially attractive.

On the other hand, MPEG-4 is considered to be an all-embracing
standard, in that different vendors attempt to support a subset
using a number of profiles and levels. Some even call it a very
ambitious standard without focusing on anything (see [1] for more
discussion of this). The industry is split on which MPEG-4
profiles, levels and feature sets need to be supported in
applications by servers, client systems and chips. However, with
a prototype proof-of-concept testbed for MPEG-4 multimedia
streaming, especially if it is also open-source, such deficiencies of
the MPEG-4 standard does not prevent the academic community
from studying its typical traffic envelopes, loss requirements,
bandwidth variations and error resilience levels. To the best of
our knowledge, there are no existing work that attempts to study
Quality-of-Service issues of streaming MPEG-4 contents over IP-
based networks, mostly because of the lack of such an open-
source testbed.

In this work, we attempt to break the ice and implement a
client/server-based MPEG-4 multimedia streaming testbed over
unreliable transport protocols such as UDP. The entire testbed
implementation is based on an available open-source MPEG-4
video codec [2], with our own open-source streaming extensions.
The primary goal is to measure the bandwidth delivered over the
network, from the server to the client. We present our choices of
algorithms and solutions in such a testbed, and present our

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ACM Multimedia ’01, October 2001, Ottawa, Ontario Canada.
Copyright 2000 ACM 1-58113-000-0/00/0000…$5.00.

extensive experimental results based on streaming three real-
world high-quality video and audio over the network.

The rest of this paper is organized as follows. In Section II we
show the design and architecture of our implementation testbed;
in Section III we present extensive experimental results obtained
from streaming high-quality media over the network. We
conclude the paper in Section IV.

2. Algorithms In Testbed Implementation
In this section, we present the algorithms and solutions we have
adopted in our client/server-based MPEG-4 multimedia streaming
testbed. In addition, we summarize our lessons learned and
experiences from implementing such a testbed. In details, we first
introduce the basic structure of an MPEG-4 player based on an
open-source MPEG-4 codec; followed by discussions related to
our own streaming extensions based on UDP, which is
ubiquitously available in the TCP/IP protocol stack on all
consumer operating systems.

2.1 The OpenDivX MPEG-4 Codec
Our work is based on an open-source MPEG-4 player just
released in January 2001, referred to as The Playa. The Playa is
implemented on the Windows platform. It is currently capable of
playing local MPEG-4-coded files through the support of an
open-source MPEG-4 codec that conforms to the MPEG-4
standard, referred to as OpenDivX [2]. In addition to MPEG-4
video, The Playa is able to play audio in various formats using
Windows-based DirectSound interfaces (e.g. PCM, MP3). The
playback process can be divided into the following two phases:

Phase 1: Preparation

All basic information about video/audio properties, such as
video bitmap information (size and color depth), frame rate and
codec types is retrieved in this stage. The list of video/audio
headers in the MPEG-4 file is then parsed and data about
position in the file and length of each video frame (or audio
chunk) is collected for easy access in later phases.

Based on the information gathered at previous phase, proper
interfaces to audio and video codecs are created and initialized.
Video playback surfaces are then created.

Phase 2: Playback Loop

Outstanding video frame is read from the MPEG-4 file,
decompressed and then rendered. This process is accomplished
in a new thread, leaving the main thread responding to user
interface events. The thread waits if video playback is ahead of
its time, or drops some frames if it’s backlogged. Audio
decompression and playback are done in a separate thread.
Note that “dropping” here only means “not rendering”. Each
frame must be decompressed till the codec states are updated
for decoding subsequent frames.

2.2 UDP-based MPEG-4 Streaming
For the purpose of extending the MPEG-4 file player and
accommodate multimedia streaming over the network, we have
created two variants of the Playa, one functioning as a server and
the other as a client. The server opens a file and waits for a
connection from the client. After receiving the connection, it
streams video and audio using UDP packets to the client with the
same rate as if it would do the playing itself. We have attempted
to minimize our interaction with the Playa algorithms to make

future integrations to its newer versions easier. As a preliminary
proof-of-concept testbed, our current implementation does have
some limitations. For example, the server supports only one
client; and no random access to the content is available, i.e. the
clip must be played sequentially from the beginning.

We have chosen straightforward UDP as our underlying protocol,
since it is ubiquitously present in any TCP/IP stack implemented
in all consumer operating systems. Since using UDP implies data
loss or out of order delivery, buffer management at the client side
becomes the most challenging part of our work. We present
additional details as follows.

2.2.1 Server-side Implementation

After a file is selected, regular extraction of header and index
information is initiated. This is immediately followed by the
creation of two sockets, one connection oriented (TCP) and the
other one connectionless (UDP). The server then waits for
client’s connection to deliver the header and general information
about the clip over the connection-oriented socket. Regular
playback loop starts thereafter, but whenever a video frame or
audio chunk is read from file, the data is initially copied to our
send buffers for transferring at correct intervals. We utilize two
64KB buffer as send buffers, one for audio and the other for
video. Video frames or audio chunks are appended into their
related send buffers and whenever either buffer is full (i.e. cannot
accept the next frame or chunk), it is sent to the client with a
blocking send on the UDP socket. A partially filled buffer might
be sent earlier if the interval between two successive send
operations is more than a threshold. This is necessary to generate
data continuously when video or audio bit rate is low (i.e. black
frames at start of a film or a good quality stereo MP3 audio with
only 16KBytes/s). This threshold is currently set at 0.5 second.

Each video frame or audio chunk appended to the send buffers is
preceded with a header including its timestamp, size and
miscellaneous flags for extra processing needs.

2.2.2 Client-side Implementation

Client implementation is more complicated since it needs careful
and efficient buffer management to make sure no data is lost
because of delayed processing in the receiving phase. This might
happen because of the unreliable nature of UDP delivery.
Besides, if outdated data is not invalidated from buffers on time,
we might run out of the available buffer and lose new data.

In our current testbed, 150 buffers are utilized, each with the size
of maximum frame size in the clip1. Since the Playa reads audio
data in chunks of 2048 bytes from the file, proper number of 2048
bytes buffers is allocated to match the number of video buffers
(for the same duration of ahead buffering).

Similarly, the client creates a connection-oriented and a
connection-less socket. It receives the file header and general
information on the TCP socket. Using this information, it
initializes the data structures of original code to emulate retrieval
from a file. It then launches the receiving thread, which issues

1 This maximum frame size is transferred from server to client as

part of general information sent on the initiating TCP
connection

successive receive commands on the UDP socket. Each packet
received is processed and its corresponding audio or video buffers
are updated. Buffers form ordered double-linked lists (for both
audio and video) to ease traversing of buffers, when adding new
frames at receiving time and retrieving existing frames at playback
time.

The playback is not started till 4/5 of video buffers are filled. It
results in around 4-5 seconds (for 23.97 to 29.97 FPS samples we
had) of ahead buffering before starting playback. Video and audio
threads of the original player run their regular codec algorithms.
Only when a read of video frame (audio chunk) is requested, the
video (audio) list is searched for that specific frame (chunk). If
the frame (chunk) is found in the buffers, it’ll be decompressed
and rendered.

After a video frame (audio chunk) read is processed (successful or
not), all other outstanding video frames (audio chunks) with equal
or lesser timestamp are invalidated in the buffer lists and returned
to the available buffers pool. To filter out-of-date incoming
frames (chunks), we also check the timestamps of the arriving data
with the timestamp of last played data and ignore them if they are
delayed.

3. Analysis and results
We have performed extensive experiments with respect to data
throughput and loss for streaming three real-world near-DVD
quality multimedia clips, “The Matrix”, “Jurassic Park” and
“Frankenstein”, including both video and audio. As expected, the
data loss was acceptably low on a 10Mbps LAN. The CPU
capabilities on the client side have a significant effect on the data
loss rate. For high bit-rate samples on a Pentium III 500MHz
CPU, the decoding process increases CPU utilization up to 100
percent for most parts of the clip, resulting in failures of retrieving
data from the transport layer on time, which leads to considerable
data loss. We have since upgraded the client’s CPU to 733MHz,
which leads to a significant reduction in data loss for high bit-rate
samples.

Table I shows the results of running UDP delivery of our
multimedia clips to the client. Some of the losses are attributed to
high bit-rate segments of the clip or the start of playback (i.e.
losing some packets when decompression of first frames is started
on client, around second 5 of clip). However, we are unable to
argue the same for all data losses. Additional analysis of client
logs and bit rate distribution of the clip is necessary. Some of
these losses happen when CPU usage was quite low (e.g. 45%), so
it might be that our algorithm is not issuing receive commands on
time, or due to temporary back-offs on the local area network.

TABLE I

STREAMING DELIVERY OF SAMPLE CLIPS 1

Sample &
resolution2

Compre-
ssion rate3

Number of
video frame

(audio chunk)
loss/total 4

Avg. video bit
rate/ Max rate5

(Kb/s)

Avg.
audio

bit
rate

Length

Matrix-4
720*480

5000
Kb/s

14 / 37872
(0 / 12343)

2248 / 6699 126 26 min.

Matrix-3
720*480

6000
Kb/s

16 / 26907
(0 / 8768)

2283 / 7570 126 19 min.

Jurassic-3
720*480

900
Kb/s

13 / 34882
(0 / 11361)

915 / 2034 126 24 min.

Jurassic-3
720*480

2000
Kb/s

11 / 34864
(0 / 11361)

1997 / 3214 126 24 min.

Jurassic-3
720*480

5000
Kb/s

10 / 10966
(0 / 3574)

4038 / 7309 126 8 min.

Jurassic-3
720*480

6000
Kb/s

29 / 34845
(0 / 11361)

4156 / 9882 126 24 min.

Frankens-
tein-1

720*480

900
Kb/s

8 / 29312
(0 / 9554)

980 / 2680 126 20 min.

Frankens-
tein-1

720*480

5000
Kb/s

2 / 7219
0 / 2352

2897 / 7271 125 5 min.

Frankens-
tein-1

320*240

900
Kb/s

112 / 131427
9 / 42873

727 / 1576 125 91 min.

1 The test environment:

- Server: PIII-550MHz, Windows 2000.

- Client: PIII-733MHz, Windows 2000.

- OpenDivX version 4.0 Alfa 48 for MPEG-4 video codec.

- For all samples, audio was coded using Fraunhofer MPEG
Layer-3 codec at 128Kbit/s.

- 10Mbps LAN, not highly loaded (after-hours condition).
2 All samples were 23.97 FPS.
3 Compression rate selected on MPEG-4 codec.
4 Note that effects of one frame loss are sometimes noticeable for

next few seconds till the next key frame updates the codec
states.

5 Maximum bit rate is measured at the server side (from input
file).

Experiments under more complicated network conditions such as
a more congested LAN or over high-speed Internet can be among
our next tasks. Better audio and video synchronization is
necessary when high bit rate samples are played on a low-end
CPU (e.g. PIII 500MHz). In such cases, the original
synchronization method implemented in the Playa does not
perform well when video decompression lags far behind audio. A
more aggressive approach may be required in these cases.

4. Concluding Remarks
In this paper, we have presented an open-source MPEG-4 network
streaming testbed for synchronized audio and video, based on
existing open-source MPEG-4 codecs. It is implemented as a
proof-of-concept testbed for the purpose of supporting subsequent
academic research with respect to the analysis of real-world
MPEG-4 streaming over IP-based networks. The fact that our
code will be open source is a significant support to the academic
community to migrate from MPEG-1 or MPEG-2 centered
research to the MPEG-4 standard, particularly with respect to
Quality-of-Service issues.

5. References
[1] J. Yoshida, "MPEG-4: key enabler or ‘science fiction’?," EE

TIMES, Issue 1154, pp. 1-16, Feb. 19, 2001.

[2] Project Mayo website, http://www.projectmayo.com.

