
Impact of Control Theory on QoS Adaptation in Distributed
Middleware Systems

Baochun Li
Electrical and Computer Engineering

University of Toronto
bli@eecg.toronto.edu

Klara Nahrstedt
�

Department of Computer Science
University of Illinois at Urbana-Champaign

klara@cs.uiuc.edu

1 Introduction

In ubiquitous computing environments, various distributed multimedia applications will be desired. Examples of such ap-
plications are video-on-demand, video conferencing, visual tracking and others. For these applications to be accepted, they
must deliver desired quality of services (QoS) to the users such as desired video frame rate, tracking precision, and minimal
loss of information. This is especially challenging in shared computing and communication environments with no underlying
operating and networking system support for QoS. The difficulty lies in fluctuation and unpredictability in resource availabil-
ity when multiple tasks share processor, network bandwidth or memory. However, cost of computing and communication
infrastructure for distributed multimedia applications forces the application designers to share the infrastructure, hence dis-
tributed middleware systems are needed to help applications with underlying fluctuations in resource availability. Middleware
systems reside between the operating system and the applications and one of the key roles of middleware systems is to assist
applications in their goal of delivering the required QoS. The approach, used in middleware systems, is QoS adaptation.

There exist many heuristic algorithms to do QoS adaptation utilizing buffering approaches [1], smoothing algorithms
[2], acknowledgment-based approaches [3], priority-based algorithms [4] and others. All these algorithms present possible
system mechanisms, protocols, policies, hence partial solutions regarding how to deal with QoS adaptation, but they do not
present a viable model and framework for QoS adaptation which allows (1) to reason about QoS adaptation properties such
as stability, agility and fairness, and (2) to introduce new adaptation algorithms in an integrated and scalable fashion.

In this extended abstract we outline an integrated and scalable control model for QoS adaptation (Section 2), and show how
it can benefit the quality control in distributed middleware systems (Section 3). We have built a prototype of a middleware
system, called Agilos, which verifies our control model and shows the soundness of our approach (Section 4).

2 Control Model for QoS Adaptation

The major objective of a middleware system is to control an application task so that critical quality parameters are deliv-
ered. In order to control an application, we need to establish a task control model. Our control task model consists of the
target task to be controlled, the adaptation task that implements the control algorithm, and the observation task that observes
task states in the target task (Figure 1).

The target task, utilizing the control theory, can have the following form:
�������	�
�
���������	������� �����	���������	���	�����	�������

(1)

 ���	���"!#� �����	����$����	�%�	���
(2)

With the above definition, the target task is said to be at equilibrium when:
&
This work was partially supported by the Air Force grant under contract number F30602-97-2-0121 and National Science Foundation Career grant

under contract number NSF CCR 96-23867.

Task States

Reference Adaptation Task Observation Task

Target Task
Actions
Control

Figure 1. The Task Control Model

�����	��� � �"��� �����	���������	���������	�������
(3)

where
�

denotes the vector of task states,
�

the vector of controllable input parameters, the vector of observed output
parameters of the task,

�
the uncontrollable variations in the task, and

$
the observation errors.

The above stated definitions are generic and may be non-linear, time-varying, and too complex to derive a suitable control
algorithm. Hence, in order to speed up and simplify the control, we will approximate the task control path by piecewise linear
functions and work with target task model as follows:

����� ����� �������	� ��
���#�����	� ��
 �������	� �
(4)

� ��� ����� ����� � (5)
 ��� ��� � ��� ��
 $���� � (6)

We have derived a concrete model of a target task based on the above simplified generic model, in the scenario shown in
Figure 2.

Requesting Resources

Control Algorithm

Adaptation Task

Estimation Observation

Observation Task

Granted

Requests y(k) Requests x(k)
Resource

Outstanding

Middleware

Configurator

x(k)

To Next TaskFrom Previous Task New Resource Requests u(k)

Core Functionalities

Adaptation Points

Resource Management

Shared

Granting Requests c

Adaptor

and Scheduler

Target Task

Resource Resource Pool

Figure 2. A Concrete Model for the Target Task

The model assumes a resource pool which is shared among multiple target tasks, and each application task makes requests
for resources through its middleware system. These requests are either granted or outstanding. The system is granting �
requests within a given time interval for multiple running tasks. If one target task has a critical QoS parameter which requires
a threshold, e.g., ��� requests to be satisfied, then the observation and adaptation tasks of the task control model, residing in
the middleware, must provide control actions to adapt and adjust resource requests of other target tasks.

Equation (7) provides an analytical model for the above observations:

2

� ��� � � � �����	� �
� � �����	� � � � ��� � � � �����	� ��� �������	��
�

�	� �

����� � ���

� (7)

where � ��� � is the total number of outstanding resource requests made by all concurrent tasks at time
�

, �
��� �

is the
controlled request rate by the controller (the adaptation task), and � ��� �

is the total number of active concurrent application
tasks. � is the request granting rate. Intuitively, the model captures the general fact that the difference between resource
requesting rate under control (for all active tasks) and resource granting rate is equivalent to the changes in total number of
outstanding resource requests.

Our control model assumes that application target tasks have a good understanding of their critical QoS parameters and
their mappings to thresholds in order to trigger appropriate adaptive control actions. In order to learn about appropriate
thresholds, we have introduced a novel middleware component QualProbes to probe the dynamic behavior of the application
task at run-time during experimental runs, and then apply the result of probing to determine related thresholds, which are
applied during actual field runs.

Using our concrete task control model, we are able to show [5] stability and agility properties for QoS adaptation. For
shared resources (e.g. CPU) we can show the fairness property as well.

3 Adaptive QoS Control in Distributed Middleware Systems

Our concrete task control model for QoS adaptations must withstand not only minor fluctuations in shared resource
availability, but also large changes. For this larger scale of fluctuation, it is necessary that the adaptation task of the task control
model be designed in a hierarchical fashion. The hierarchical design ensures that small changes in resource availability can
be controlled by adaptation tasks, acting as linear controllers (e.g. a PID controller) to adjust the request rate, resulting in
small QoS changes. On the other hand, large changes in resource availability require very often functional changes in the
target task, hence these types of changes can be controlled by fuzzy controllers, which we refer as configurators. Along with
observation tasks, the fuzzy and linear controllers are integrated to form a hybrid control mechanism, shown in the feedback
loop in Figure 3.

Adaptor Configurator

Observer

Gateway

Resource Availability

Application Server

Interface

Application Client

Interface
Application-specific
 control actions

Negotiator

Application-specific
 QoS parameters

Observed values

Application-neutral
 control actions

Target load

Figure 3. The Control Loop In the Agilos Architecture

When integrated with other value-added services such as QualProbes, negotiators and gateway services [6], we have
designed Agilos, a hierarchical control-based middleware framework to support application-level QoS adaptations. The
overall architecture of Agilos is shown in Figure 4. In the figure, adaptors, configurators, and negotiators implement the
adaptation tasks in the task control model, and observers implement the observation tasks. As our experiments in Section 4
will show, Agilos works across end hosts in a distributed fashion, effectively controlling the application to achieve a better
performance via adaptations.

4 Validation with OmniTrack

We have implemented the Agilos framework under Windows NT, and have carried out a series of experiments with Om-
niTrack, a distributed omni-directional tracking application, which have effectively validated the design of the Agilos frame-
work. Servers in OmniTrack are able to serve live video streams to clients, which execute visual tracking algorithms that track
the objects of interest. Our focus is on the critical QoS parameter, which is the tracking precision for the case of OmniTrack.

3

Adaptors

CPU Network Bandwidth

Configurators

Functional Quantitative

Observers

CPU Network Bandwidth

First Tier Middleware: Application Neutral, Resource Specific

Second Tier Middleware: Application Specific, Client-Server

Third Tier Middleware: Application Specific, Multiple Clients and Servers

OS and Communication Networks

QualProbes
User

NegotiatorsGateway

Distributed applications with multiple clients and servers

OmniTrack Servers OmniTrack Clients

���������
	

Adaptation Path

Live Video

Figure 4. The Hierarchical Design of the Agilos Architecture

Figure 5 shows the results we have obtained, in one of the experimental scenarios. Table 1 shows the control actions
generated by the configurator at their respective starting times. The timing of these control actions is also visually embedded
in Figure 5(b).

Start Time (sec) Control Action from Configurator
4-40 addtracker
56 compress
62-120 droptracker
139 uncompress
145-178 addtracker

Table 1. Control Actions generated by the Configurator

In Figures 5(a) and 5(b), we show observations with respect to network throughput and end-system CPU load. These
observations drive the first tier adaptors, whose output drives the behavior of functional configurators in the second tier. In
the case of this scenario, a hybrid combination of parameter-tuning and reconfiguration choices is activated by Agilos. The
specific reconfiguration choices being used are compress and uncompress, which activates and deactivates the Motion
JPEG video codec in both the tracking server and client. The tunable parameter is the number of active trackers. Since the
trackers are executed in a round-robin fashion, the duration of executing all trackers in each iteration is increased when there
are more active trackers present. This may impose a heavier CPU load on the end system. Figure 5(c) shows the number of
active trackers, which is the result of the control actions droptracker and addtracker generated by the configurator.
The reconfigurations compress and uncompress significantly reduces the network throughput from the server to the
client, and increases the CPU load to near 100%. This leads to another round of parameter tuning adaptations related to
droptracker. As illustrated in Figure 5(d), this combination of parameter-tuning and reconfiguration choices, activated
with appropriate timing determined by the configurator, leads to a stable collective tracking precision for all trackers. Such
measurement of tracking precision is obtained by calculating the average of the precision of individual trackers.

Based on the above analysis, we conclude that a hybrid control framework, consisting of a linear PID controller and a
fuzzy controller, is effective for maintaining the stability of the critical QoS parameter, and presents a feasible solution for
QoS adaptation in distributed middleware systems.

4

Observed throughput (bytes/sec)

0 100 200
Time (seconds)

0

200000

400000

600000

800000

1000000

(a) Network Throughput

CPU Load (percentage)

0 100 200
Time (seconds)

0

20

40

60

80

100

compress

uncompress

droptracker

addtracker

addtracker

(b) CPU Load

Number of active concurrent trackers

0 100 200
Time (seconds)

0

5

10

15

20

25

30

35

40

(c) Number of Active Concurrent Trackers

Tracking precision for all active trackers (average, in pixels)

0 100 200
Time (seconds)

0

10

20

30

40

50

(d) Average Tracking Precision for All Trackers

Figure 5. Experimental Results for Scenario 2

References

[1] M. Shor, K. Li, and J. Walpole, “Application of Control Theory to Modeling and Analysis of Computer Systems,” in
Proceedings of Japan-USA-Vietnam Workshop on Research and Education in Systems, 2000.

[2] G. Cao, W. Feng, and M. Singhal, “Online VBR Video Traffic Smoothing,” in Proceedings of 8th IEEE International
Conference on Computer Communications and Networks, 1999, pp. 502–507.

[3] Z. Chen, S. Tan, R. Campbell, and Y. Li, “Real Time Video and Audio in the World Wide Web,” in Proceedings of
Fourth International World Wide Web Conference, 1995.

[4] H. Chu and K. Nahrstedt, “CPU Service Classes for Multimedia Applications,” in Proceedings of IEEE International
Conference on Multimedia Computing and Systems, 1999.

[5] B. Li and K. Nahrstedt, “A Control-based Middleware Framework for Quality of Service Adaptations,” IEEE Journal of
Selected Areas in Communications, vol. 17, no. 9, pp. 1632–1650, Sept. 1999.

[6] W. Kalter, B. Li, W. Jeon, K. Nahrstedt, and J. Seo, “A Gateway-Assisted Approach Toward QoS Adaptations,” in
Proceedings of IEEE International Conference on Multimedia and Expo, Aug. 2000, pp. 855–858.

5

