Privacy-Preserving Inference in Crowdsourcing Systems

Liyao Xiang
Supervisor: Baochun Li
Oct. 9, 2017
University of Toronto
In a crowd, some users know about their locations while some don’t. With distance observations between them, how to localize each user?
Localization via Crowdsourcing

- Each user sends their prior estimates and distance observations to a central server, who returns the most likely position for each.

- What if users would like to keep their locations private?
Privacy-Preserving Localization

- In a crowd, some users know about their locations while some don’t. With distance observations between them, how to localize each user without breaching privacy?
Privacy-Preserving Localization

- In a crowd, some users know about their locations while some don’t. With distance observations between them, how to localize each user without breaching privacy?
Particle Representation

- User’s Location

 - A user’s location is represented by a set of particles $Z_{i,t} = \{z_1, \ldots, z_R\}$, $Z_t = \{Z_{1,t}, \ldots, Z_{N,t}\}$.

 - At time t, the server finds the most likely distribution of Z_t given Z_{t-1} and D.

 $$Z_t^* = \arg \max_{Z_t} P(Z_t|Z_{t-1}, D).$$
First Attempt

- To encrypt all particles and run the inference in the encrypted domain.

However, encrypted operations are constrained.
Particle Representation

- User’s Location

 - A user’s location is represented by a set of particles $Z_{i,t} = \{ z_1, \ldots, z_R \}$. Each particle is associated with a weight $\{ w_1, \ldots, w_R \}$.

 - For example, if the location estimate is $\{ z_1, z_2, z_3 \}$ with probabilities $\{0.6, 0.2, 0.2\}$, then the location is more likely to be z_1 than z_3.
Particle Representation

- Users upload each particle’s weight \{E(W_1), \ldots, E(W_R)\} and distance observations to others E(D) in encryption.

- Server updates each particle’s weight.
Privacy-Preserving Inference

- Server computes partial information $C_{i,r}$ for each particle r of each user i (j is observed by $i)$:

$$c_{i,r} = \prod_{j \in \mathcal{N}(i)} \prod_{s \in \{1, \ldots, R\}} E_{pk}(\ln w_{j,s}) \cdot E_{pk}(d(z_{i,r}, z_{j,s})^2) - \frac{1}{2\sigma^2}$$

$$\cdot E_{pk}(D_{ij}) \frac{d(z_{i,r}, z_{j,s})}{\sigma^2} \cdot E_{pk}(D_{ij}^2) - \frac{1}{2\sigma^2}$$

$$= E_{pk} \left[\sum_{j \in \mathcal{N}(i)} \sum_{s \in \{1, \ldots, R\}} (\ln w_{j,s} - (d(z_{i,r}, z_{j,s}) - D_{ij})^2 / 2\sigma^2) \right].$$
Privacy-Preserving Inference

- With secret key sk, user i updates the weight $W_{i,r}$ for its particle r (d_{js} is the calculated distance between particle s of user j and particle r of user i):

$$w_{i,r}^k = w_{i,r}^{k-1} \exp[E_{sk}(c_{i,r})]$$

$$= w_{i,r}^{k-1} \exp\left[\sum_{j \in \mathcal{N}(i)} \sum_{s \in \{1,\ldots,R\}} (\ln w_{j,s} - (d_{js} - D_{ij})^2 / 2\sigma^2) \right]$$

$$= w_{i,r}^{k-1} \prod_{j \in \mathcal{N}(i)} \prod_{s \in \{1,\ldots,R\}} \exp(\ln w_{j,s} - (d_{js} - D_{ij})^2 / 2\sigma^2)$$

$$= w_{i,r}^{k-1} \prod_{j \in \mathcal{N}(i)} \prod_{s \in \{1,\ldots,R\}} w_{j,s} \cdot \exp\left(- \frac{(d_{js} - D_{ij})^2}{2\sigma^2} \right)$$

$$\simeq w_{i,r}^{k-1} \prod_{j \in \mathcal{N}(i)} \prod_{s \in \{1,\ldots,R\}} \Pr(z_{i,r}, z_{j,s} | D_{ij,t}).$$
Privacy-Preserving Localization with Crowdsourcing

1. **Time t**
 - **Prior Z** \(Z_{i,t} \)
 - **Encrypt**: Upload \(Z_{i,t} \), \(E(w) \) and \(E(D) \).
 - **Decrypt**: Download \(C_{i,t} \).
 - **Inference**: Run inference.

2. **Time t+1**
 - **Prior Z** \(Z_{i,t+1} \)
 - **Encrypt**: Upload \(Z_{i,t+1} \), \(E(w) \) and \(E(D) \).
 - **Decrypt**: Download \(C_{i,t+1} \).

Update Prior
- Decrypt and update prior with \(Z^*_{i,t} \).
But, with R particles, adversary can still guess correct location with Prob. $1/R$.
Data Perturbation

- Idea: perturb $Z_{i,t} = \{ z_1, \ldots, z_R \}$ as $Y_{i,t} = \{ y_1, \ldots, y_R \}$.

- Perturbation: add Gaussian noise $\mathcal{N}(0, \sigma^2)$ to $Z_{i,t}$ that satisfies location differential privacy.
Privacy Definition

- Location Differential Privacy:

 A mechanism M satisfies (ϵ, δ)-differential privacy iff for all z, z' that are $d(z, z')$ apart:

 $$\Pr[M(z) \in Y] \leq e^{\epsilon} \Pr[M(z') \in Y] + \delta,$$

 and $\epsilon = \rho d^2(z, z') + 2\sqrt{\rho \log(1/\delta)}d(z, z')$,

 where ρ is a constant specific to the perturbation mechanism we adopt.
Interpretation of Privacy Definition

- Location Differential Privacy: the projected distributions of all the points within the same dotted circle are at most ϵ apart from each other.

- As the distance between the two locations is smaller, ϵ is smaller, indicating that it is harder to distinguish the two locations, i.e., higher privacy level.
Privacy Definition

- User Differential Privacy

If we report \(Z = (z_1, ..., z_R) \) as \(Y = (y_1, ..., y_R) \), then the probability of reporting \(Y \) given \(Z \) is:

\[
Pr[M(Z) \in Y] = \prod_i Pr[M(z_i) \in Y].
\]

The user enjoys \((\epsilon', \delta)\)-differential privacy with

\[
\epsilon' = \rho Rd^2(Z, Z') + 2\sqrt{\rho \log(1/\delta)} Rd^2(Z, Z').
\]
Collecting \mathbf{Y}, the server computes the pairwise distances between each pair of perturbed particles as:

$$
\tilde{d}(y, y') = \sqrt{||y - y'||_2^2 - 4\sigma^2}.
$$
How can we guarantee the inference result the same with the unperturbed case?
Privacy and Utility Analysis

- Utility results: We proved $\tilde{d}(y, y')$ is an unbiased estimator of $d(z, z')$

- Privacy guarantee: We proved our perturbation scheme satisfies location differential privacy and user differential privacy. Compared to previous work, we improve the privacy level by \sqrt{R} with the same utility level.
Performance Evaluation

- Overhead

![Graphs showing the running time of the MAP inference and the convergence of the particle distribution.]

- Running Time of the MAP Inference
 - R = 50
 - R = 75
 - R = 100

- Convergence of the Particle Distribution
 - Highest Particle Weight
 - No. of Iterations (5 Iterations × 15 Timeslots)
Performance Evaluation

- Simulation results using random way point (RWP) model.
Performance Evaluation

- Comparison experiment and real-world experimental results.

![Comparison with Hilbert Curves on RWP Model](image1)

![Average Position Error of 7 Users in Different Settings](image2)
Thank you!